Fabrication and characterization of CPP-GMR and spin-transfer torque induced magnetic switching
Herstellung und Charakterisierung von CPP-GMR und Spin-Transfer-Drehmoment induzierten magnetisches Schalten
Please always quote using this URN: urn:nbn:de:bvb:20-opus-102226
- Even though the unique magnetic behavior for ferromagnets has been known for thousands of years, explaining this interesting phenomenon only occurred in the 20th century. It was in 1920, with the discovery of electron spin, that a clear explanation of how ferromagnets achieve their unique magnetic properties came to light. The electron carries an intrinsic electric charge and intrinsic angular momentum. Use of this property in a device was achieved in 1998 when Fert and Gru¨nberg independently found that the resistance of FM/NM/FM trilayerEven though the unique magnetic behavior for ferromagnets has been known for thousands of years, explaining this interesting phenomenon only occurred in the 20th century. It was in 1920, with the discovery of electron spin, that a clear explanation of how ferromagnets achieve their unique magnetic properties came to light. The electron carries an intrinsic electric charge and intrinsic angular momentum. Use of this property in a device was achieved in 1998 when Fert and Gru¨nberg independently found that the resistance of FM/NM/FM trilayer depended on the angle between the magnetization of the two layers. This phenomena which is called giant magnetoresistance (GMR) brought spin transfer into mainstream. This new discovery created a brand new research fi called “spintronics” or “spin based electronics” which exploits the intrinsic spin of electron. As expected spintronics delivered a new generation of magnetic devices which are currently used in magnetic disk drives and magnetic random access memories (MRAM). The potential advantages of spintronics devices are non-volatility, higher speed, increased data density and low power consumption. GMR devices are already used in industry as magnetic memories and read heads. The quality of GMR devices can be increased by developing new magnetic materials and also by going down to nanoscale. The desired characteristic properties of these new materials are higher spin polarization, higher curie temperature and better spin filtering. Half-metals are a good candidate for these devices since they are expected to have high polarization. Some examples of half-metals are Half-Heusler alloy, full Heusler alloy and Perovskite or double Perovskite oxides. The devices discussed in this thesis have NiMnSb half-Heusler alloy and permalloy as the ferromagnetic layers separated by Cu as the nonmagnetic layer. This dissertation includes mainly two parts, fabrication and characterization of nan- opillars. The layer stack used for the fabrication is Ru/Py/Cu/NiMnSb which is grown on an InP substrate with an (In,Ga)As buff by molecule beam epitaxy (MBE). A new method of fabrication using metal mask which has a higher yield of working samples over the previous method (using the resist mask) used in our group is discussed in detail. Also, the advantages of this new method and draw backs of the old method are explained thoroughly (in chapter 3). The second part (chapters 4 and 5) is focused on electrical measurements and charac- terization of the nanopillar, specially with regard to GMR and spin-transfer torque (STT) measurements. In chapter 4, the results of current perpendicular the plane giant mag- netoresistance (CPP-GMR) measurements at various temperatures and in-plane magnetic fi are presented. The dependence of CPP-GMR on bias current and shape anisotropy of the device are investigated. Results of these measurements show that the device has strong shape anisotropy. The following chapter deals with spin-transfer torque induced magnetic switching measurements done on the device. Critical current densities are on the order of 106 A/cm2, which is one order of magnitude smaller than the current industry standards. Our results show that the two possible magnetic configurations of the nanopillar (parallel and anti-parallel) have a strong dependence on the applied in-plane magnetic fi Fi- nally, four magnetic fi regimes based on the stability of the magnetic configuration (P stable, AP stable, both P and AP stable, both P and AP unstable) are identified.…
- Obwohl das einzigartige ferromagnetische Verhalten seit Tausenden Jahren bekannt ist, traten Erklärungen zu diesem interessanten Phänomen erst im 20. Jahrhundert auf. Erst im Jahr 1920, mit der Entdeckung des Elekronenspin, gab es eine Vorstellung davon, wie die Ferromagnetika ihre einzigartigen magnetischen Eigenschaften erhalten. Die Elektronen sind sowohl Träger einer intrinsischen Ladung als auch eines intrinsichen Drehimpulses. Die Nutzung dieser Eigenschaften in Bauteilen wurde 1998 erreicht, als Fert und Grünberg unabhängig voneinanderObwohl das einzigartige ferromagnetische Verhalten seit Tausenden Jahren bekannt ist, traten Erklärungen zu diesem interessanten Phänomen erst im 20. Jahrhundert auf. Erst im Jahr 1920, mit der Entdeckung des Elekronenspin, gab es eine Vorstellung davon, wie die Ferromagnetika ihre einzigartigen magnetischen Eigenschaften erhalten. Die Elektronen sind sowohl Träger einer intrinsischen Ladung als auch eines intrinsichen Drehimpulses. Die Nutzung dieser Eigenschaften in Bauteilen wurde 1998 erreicht, als Fert und Grünberg unabhängig voneinander die Entdeckung machten, dass der Widerstand eines Dreischichtsystems bestehend aus FM/NM/FM abha¨ngig vom Winkel der Magnetisierung in den zwei ferromagnetischen Schichten ist. Dieses Phänomen, welches als Riesenmagnetwiderstand (GMR, Giant Magnetoresistance) bekannt ist, führte dazu, dass sich der Spintransport zu einem Mainstream entwickelte. Diese neuartige Entdeckung brachte ein ganz neues Forschungsgebiet hervor, das als sogenannte Spintronik oder auch spinbasierte Elektronik bekannt ist, welche den intrinsischen Spin der Elektronen nutzt. Wie erwartet lieferte die Spintronik eine neue Generation von magnetischen Bauelementen, welche in Festplatten und magnetoresistiven RAM-Speichern (MRAM, magnetic random access memory) zu fi sind. Die großen Vorteile der spintronischen Bauelemente sind die Nichtvolalität, die höheren Geschwindigkeiten, die verbesserte Datendichte und der geringerer Energieverbrauch. GMR-Bauteile werden bereits in der Industrie als magnetische Speicher und Leseköpfe verwendet. Die Qualität der GMR-Bauteile kann durch die Entwicklung von neuen magnetischen Materialien aber auch durch Verkleinerung, also Nutzung der Nanoskala verbessert wer- den. Zu den gewünschten charakteristischen Eigenschaften dieser neuen Materialien zählen eine höhere Spinpolarisation, höher erreichbare Curie-Temperaturen und eine verbesserte Spinfi tion. Halbmetalle, wie z.B., Heusler-Legierungen, Perovskite oder auch doppeloxide sind hierfür gute Kandidaten, weil von ihnen eine hohe Polarisierbarkeit erwartet wird. Die Bauteile, die in dieser Arbeit diskutiert werden, bestehen aus einer NiMnSb-Heusler-Legierung und Permalloy als ferromagnetische Schichten getrennt durch Cu als nichtmagnetische Schicht. Die Dissertation beinhaltet hauptsächlich zwei Aspekte nämlich die Herstellung und Charakterisierung von Nanosäulen. Die benutzte Schichtung zur Herstellung ist Ru/Py/Cu /NiMnSb, welche mittels MBE (molecular beam epitaxy) auf einem InP-Substrat mit einem (In,Ga)As-Puff gewachsen ist. Eine neue Herstellungsmethode, welche Metallmasken gegenüber der früher in unserer Arbeitsgruppe gängigen Methode (Verwendung von Resistmasken) nutzt, um eine erhöhte Probenfunktionalität zu erreichen, wird im Detail diskutiert. Ebenso werden die Vorteile dieser neuen Methode und das Detail der alten Methode vollständig in Kapitel 3 erläutert. Im Fokus des zweiten Teils (Kapitel 4 und 5) stehen elektrische Messungen und Charakterisierung der Nanos¨aulen im Hinblick auf den GMR und den Spintransfer-Moment-Messungen (SST). In Kapitel 4 werden die Ergebnisse der Strommessungen, die senkrecht zur GMR-Ebene (CPP-GMR) bei verschiedenen Temperaturen und eines in der Ebene angelegten Magnetfeldes durchgeführt wurden vorgestellt zudem wird die Abhängigkeit des CPP-GMR von Bias-Strömen und von der Formanisotropy der Bauteile untersucht. Ergebnisse dieser Messungen zeigen, dass die Bauteile eine groe Formanisotropy aufweisen. In den darauffolgenden Kapiteln werden Spintransfer-Moment Messungen, die durch magnetisches Schalten in den Bauteilen hervorgerufen wurden besprochen. Kritische Stromdichten liegen in der Größenordnung 106 A/cm2, welche eine Größenordnung kleiner ist als der aktuelle Industriestandard. Unsere Ergebnisse zeigen eine starke Abhängigkeit der zwei magnetischen Konfigurationsmöglichkeiten der Nanosäulen (parallel und anti- parallel) von dem in-plane Magnetfeld. Schließlich wurden vier magnetische Feldbereiche, basierend auf der Stabilität der magnetischen Konfiguration (P stabil, AP stabil, P und AP stabil, P und AP instabil) identifiziert.…
Author: | Marjan Samiepour |
---|---|
URN: | urn:nbn:de:bvb:20-opus-102226 |
Document Type: | Doctoral Thesis |
Granting Institution: | Universität Würzburg, Fakultät für Physik und Astronomie |
Faculties: | Fakultät für Physik und Astronomie / Physikalisches Institut |
Referee: | PD Dr. Charles Gould |
Date of final exam: | 2014/08/20 |
Language: | English |
Year of Completion: | 2014 |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik |
GND Keyword: | Riesenmagnetowiderstand; Spintronik |
Tag: | CPP-GMR; Heusler; Heusler; Spin-Transfer-Drehmoment Giantmagnetoresistance; spin-transfer torque |
Release Date: | 2014/09/04 |
Licence (German): | CC BY: Creative-Commons-Lizenz: Namensnennung |