Value-distribution of the Riemann zeta-function and related functions near the critical line

Werteverteilung der Riemannschen Zetafunktion und verwandter Funktionen nahe der kritischen Geraden

Please always quote using this URN: urn:nbn:de:bvb:20-opus-97763
  • The Riemann zeta-function forms a central object in multiplicative number theory; its value-distribution encodes deep arithmetic properties of the prime numbers. Here, a crucial role is assigned to the analytic behavior of the zeta-function on the so called critical line. In this thesis we study the value-distribution of the Riemann zeta-function near and on the critical line. Amongst others we focus on the following. PART I: A modified concept of universality, a-points near the critical line and a denseness conjecture attributed toThe Riemann zeta-function forms a central object in multiplicative number theory; its value-distribution encodes deep arithmetic properties of the prime numbers. Here, a crucial role is assigned to the analytic behavior of the zeta-function on the so called critical line. In this thesis we study the value-distribution of the Riemann zeta-function near and on the critical line. Amongst others we focus on the following. PART I: A modified concept of universality, a-points near the critical line and a denseness conjecture attributed to Ramachandra. The critical line is a natural boundary of the Voronin-type universality property of the Riemann zeta-function. We modify Voronin's concept by adding a scaling factor to the vertical shifts that appear in Voronin's universality theorem and investigate whether this modified concept is appropriate to keep up a certain universality property of the Riemann zeta-function near and on the critical line. It turns out that it is mainly the functional equation of the Riemann zeta-function that restricts the set of functions which can be approximated by this modified concept around the critical line. Levinson showed that almost all a-points of the Riemann zeta-function lie in a certain funnel-shaped region around the critical line. We complement Levinson's result: Relying on arguments of the theory of normal families and the notion of filling discs, we detect a-points in this region which are very close to the critical line. According to a folklore conjecture (often attributed to Ramachandra) one expects that the values of the Riemann zeta-function on the critical line lie dense in the complex numbers. We show that there are certain curves which approach the critical line asymptotically and have the property that the values of the zeta-function on these curves are dense in the complex numbers. Many of our results in part I are independent of the Euler product representation of the Riemann zeta-function and apply for meromorphic functions that satisfy a Riemann-type functional equation in general. PART II: Discrete and continuous moments. The Lindelöf hypothesis deals with the growth behavior of the Riemann zeta-function on the critical line. Due to classical works by Hardy and Littlewood, the Lindelöf hypothesis can be reformulated in terms of power moments to the right of the critical line. Tanaka showed recently that the expected asymptotic formulas for these power moments are true in a certain measure-theoretical sense; roughly speaking he omits a set of Banach density zero from the path of integration of these moments. We provide a discrete and integrated version of Tanaka's result and extend it to a large class of Dirichlet series connected to the Riemann zeta-function.show moreshow less
  • Die Riemannsche Zetafunktion ist ein zentraler Gegenstand der multiplikativen Zahlentheorie; in ihrer Werteverteilung liegen wichtige arithmetische Eigenschaften der Primzahlen kodiert. Besondere Bedeutung kommt hierbei dem analytischen Verhalten der Zetafunktion auf der sog. kritischen Geraden zu. Wir untersuchen in dieser Arbeit die Werteverteilung der Riemannschen Zetafunktion auf und nahe der kritischen Geraden. Wir fokusieren wir uns dabei u.a. auf folgende Punkte. TEIL I: Ein modifiziertes Universalitätskonzept, a-Stellen nahe derDie Riemannsche Zetafunktion ist ein zentraler Gegenstand der multiplikativen Zahlentheorie; in ihrer Werteverteilung liegen wichtige arithmetische Eigenschaften der Primzahlen kodiert. Besondere Bedeutung kommt hierbei dem analytischen Verhalten der Zetafunktion auf der sog. kritischen Geraden zu. Wir untersuchen in dieser Arbeit die Werteverteilung der Riemannschen Zetafunktion auf und nahe der kritischen Geraden. Wir fokusieren wir uns dabei u.a. auf folgende Punkte. TEIL I: Ein modifiziertes Universalitätskonzept, a-Stellen nahe der kritischen Geraden und eine Dichtheitsvermutung nach Ramachandra. Die kritische Gerade fungiert als natürliche Grenze für die Voroninsche Universalitätseigenschaft der Riemannschen Zetafunktion. Wir modifizieren Voronins Universalitätskonzept dahingehend, dass wir die vertikalen Translationen aus Voronins Universalitätssatz mit einer zusätzlichen Skalierung versehen. Wir untersuchen, ob durch dieses modifizierte Konzept eine abgeschwächte Universalitätseigenschaft der Riemannschen Zetafunktion um die kritschen Gerade aufrecht erhalten werden kann. Es stellt sich heraus, dass die Gestalt der Funktionen, die sich auf diese Weise durch die Zetafunktion approximieren lassen, stark von der Funktionalgleichung und der Wahl des skalierenden Faktors abhängt. Nach einem Resultat von Levinson liegen fast alle a-Stellen der Riemannschen Zetafunktion in einem trichterförmigen Bereich um die kritische Gerade. Gewisse Normalitätsargumenten sowie das Konzept der 'filling discs' erlauben uns Levinsons Resultat zu ergänzen und a-Stellen in diesem trichterförmigen Bereich aufzuspüren, die sehr nahe an der kritischen Geraden liegen. Man vermutet, dass die Werte der Riemannschen Zetafunktion auf der kritischen Geraden dicht in den komplexen Zahlen liegen. Wir nähern uns dieser Vermutung (die man oft Ramachandra zuschreibt), indem wir die Existenz gewisser Kurven nachweisen, die sich asymptotisch an die kritische Gerade anschmiegen und die Eigenschaft besitzen, dass die Werte der Zetafunktion auf diesen Kurven dicht in den komplexen Zahlen liegen. Viele unserer Ergebnisse in Teil I sind unabhängig von der Eulerproduktdarstellung der Zetafunktion und gelten allgemein für beliebige meromorphe Funktionen, die einer Funktionalgleichung vom Riemann-Typ genügen. TEIL II: Diskrete und kontinuierliche Momente. Die Lindelöf Vermutung trifft eine Aussage über das Wachstumsverhalten der Zetafunktion auf der kritischen Geraden. Nach klassischen Arbeiten von Hardy und Littlewood lässt sie sich mittels Potenzmomente der Zetafunktion rechts von der kritischen Geraden umformulieren. Tanaka konnte kürzlich nachweisen, dass die asymptotischen Formeln, die man für diese Potenzmomente erwartet in einem gewissen maßtheoretischem Sinne Gülitgkeit besitzen: grob gesprochen wird heibei eine Menge mit Banachdichte null vom Integrationsweg der Potenzmomente ausgespart. Wir stellen eine diskrete und eine integrierte Version von Tanakas Resultat zur Verfügung. Zudem verallgemeinern wir Tanakas Ergebnis auf eine große Klasse von Dirichletreihen.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Thomas Christ
URN:urn:nbn:de:bvb:20-opus-97763
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Mathematik und Informatik
Faculties:Fakultät für Mathematik und Informatik / Institut für Mathematik
Referee:Prof. Dr. Jörn Steuding, Prof. Dr. Ramunas Garunkštis
Date of final exam:2014/04/22
Language:English
Year of Completion:2013
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
GND Keyword:Riemannsche Zetafunktion
Tag:Riemann zeta-function; a-point distribution; universality
MSC-Classification:11-XX NUMBER THEORY / 11Kxx Probabilistic theory: distribution modulo 1; metric theory of algorithms / 11K70 Harmonic analysis and almost periodicity
11-XX NUMBER THEORY / 11Mxx Zeta and L-functions: analytic theory / 11M06 ζ(s) and L(s, χ)
11-XX NUMBER THEORY / 11Mxx Zeta and L-functions: analytic theory / 11M26 Nonreal zeros of ζ(s) and L(s, χ); Riemann and other hypotheses
11-XX NUMBER THEORY / 11Mxx Zeta and L-functions: analytic theory / 11M41 Other Dirichlet series and zeta functions (For local and global ground fields, see 11R42, 11R52, 11S40, 11S45; for algebro-geometric methods, see 14G10; see also 11E45, 11F66, 11F70, 11F72)
30-XX FUNCTIONS OF A COMPLEX VARIABLE (For analysis on manifolds, see 58-XX) / 30Dxx Entire and meromorphic functions, and related topics / 30D45 Bloch functions, normal functions, normal families
37-XX DYNAMICAL SYSTEMS AND ERGODIC THEORY [See also 26A18, 28Dxx, 34Cxx, 34Dxx, 35Bxx, 46Lxx, 58Jxx, 70-XX] / 37Axx Ergodic theory [See also 28Dxx] / 37A45 Relations with number theory and harmonic analysis [See also 11Kxx]
Release Date:2014/05/16
Licence (German):License LogoDeutsches Urheberrecht mit Print on Demand