Probenecid as a sensitizer of bisphosphonate-mediated effects in breast cancer cells

Please always quote using this URN: urn:nbn:de:bvb:20-opus-111174
  • Background: Anti-resorptive bisphosphonates (BP) are used for the treatment of osteoporosis and bone metastases. Clinical studies indicated a benefit in survival and tumor relapse in subpopulations of breast cancer patients receiving zoledronic acid, thus stimulating the debate about its anti-tumor activity. Amino-bisphosphonates in nM concentrations inhibit farnesyl pyrophosphate synthase leading to accumulation of isopentenyl pyrophosphate (IPP) and the ATP/ pyrophosphate adduct ApppI, which induces apoptosis in osteoclasts. For anti-tumorBackground: Anti-resorptive bisphosphonates (BP) are used for the treatment of osteoporosis and bone metastases. Clinical studies indicated a benefit in survival and tumor relapse in subpopulations of breast cancer patients receiving zoledronic acid, thus stimulating the debate about its anti-tumor activity. Amino-bisphosphonates in nM concentrations inhibit farnesyl pyrophosphate synthase leading to accumulation of isopentenyl pyrophosphate (IPP) and the ATP/ pyrophosphate adduct ApppI, which induces apoptosis in osteoclasts. For anti-tumor effects μM concentrations are needed and a sensitizer for bisphosphonate effects would be beneficial in clinical anti-tumor applications. We hypothesized that enhancing intracellular pyrophosphate accumulation via inhibition of probenecid-sensitive channels and transporters would sensitize tumor cells for bisphosphonates anti-tumor efficacy. Methods: MDA-MB-231, T47D and MCF-7 breast cancer cells were treated with BP (zoledronic acid, risedronate, ibandronate, alendronate) and the pyrophosphate channel inhibitors probenecid and novobiocin. We determined cell viability and caspase 3/7 activity (apoptosis), accumulation of IPP and ApppI, expression of ANKH, PANX1, ABCC1, SLC22A11, and the zoledronic acid target gene and tumor-suppressor KLF2. Results: Treatment of MDA-MB-231 with BP induced caspase 3/7 activity, with zoledronic acid being the most effective. In MCF-7 and T47D either BP markedly suppressed cell viability with only minor effects on apoptosis. Co-treatment with probenecid enhanced BP effects on cell viability, IPP/ApppI accumulation as measurable in MCF-7 and T47D cells, caspase 3/7 activity and target gene expression. Novobiocin co-treatment of MDA-MB-231 yielded identical results on viability and apoptosis compared to probenecid, rendering SLC22A family members as candidate modulators of BP effects, whereas no such evidence was found for ANKH, ABCC1 and PANX1. Conclusions: In summary, we demonstrate effects of various bisphosphonates on caspase 3/7 activity, cell viability and expression of tumor suppressor genes in breast cancer cells. Blocking probenecid- and novobiocin-sensitive channels and transporters enhances BP anti-tumor effects and renders SLC22A family members good candidates as BP modulators. Further studies will have to unravel if treatment with such BP-sensitizers translates into preclinical and clinical efficacy.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Regina Ebert, Franz Jakob, Jutta Meissner-Weigl, Sabine Zeck, Jorma Määttä, Seppo Auriola, Sofia Coimbra de Sousa, Birgit Mentrup, Stephanie Graser, Tilman D. Rachner, Lorenz C. Hofbauer
URN:urn:nbn:de:bvb:20-opus-111174
Document Type:Journal article
Faculties:Medizinische Fakultät / Lehrstuhl für Orthopädie
Language:English
Year of Completion:2014
Source:Molecular Cancer 2014, 13:265, doi:10.1186/1476-4598-13-265
DOI:https://doi.org/10.1186/1476-4598-13-265
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Tag:Bisphosphonates; Breast cancer cells; Caspase 3/7 activity; Cell viability,; Novobiocin; Probenecid
Release Date:2015/03/30
Collections:Open-Access-Publikationsfonds / Förderzeitraum 2014
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung