## Analysis of discretization schemes for Fokker-Planck equations and related optimality systems

### Analyse von Diskretisierungsmethoden für Fokker-Planck-Gleichungen und verwandte Optimalitätssysteme

Please always quote using this URN: urn:nbn:de:bvb:20-opus-111494
• The Fokker-Planck (FP) equation is a fundamental model in thermodynamic kinetic theories and statistical mechanics. In general, the FP equation appears in a number of different fields in natural sciences, for instance in solid-state physics, quantum optics, chemical physics, theoretical biology, and circuit theory. These equations also provide a powerful mean to define robust control strategies for random models. The FP equations are partial differential equations (PDE) describing the time evolution of the probability density functionThe Fokker-Planck (FP) equation is a fundamental model in thermodynamic kinetic theories and statistical mechanics. In general, the FP equation appears in a number of different fields in natural sciences, for instance in solid-state physics, quantum optics, chemical physics, theoretical biology, and circuit theory. These equations also provide a powerful mean to define robust control strategies for random models. The FP equations are partial differential equations (PDE) describing the time evolution of the probability density function (PDF) of stochastic processes. These equations are of different types depending on the underlying stochastic process. In particular, they are parabolic PDEs for the PDF of Ito processes, and hyperbolic PDEs for piecewise deterministic processes (PDP). A fundamental axiom of probability calculus requires that the integral of the PDF over all the allowable state space must be equal to one, for all time. Therefore, for the purpose of accurate numerical simulation, a discretized FP equation must guarantee conservativeness of the total probability. Furthermore, since the solution of the FP equation represents a probability density, any numerical scheme that approximates the FP equation is required to guarantee the positivity of the solution. In addition, an approximation scheme must be accurate and stable. For these purposes, for parabolic FP equations on bounded domains, we investigate the Chang-Cooper (CC) scheme for space discretization and first- and second-order backward time differencing. We prove that the resulting space-time discretization schemes are accurate, conditionally stable, conservative, and preserve positivity. Further, we discuss a finite difference discretization for the FP system corresponding to a PDP process in a bounded domain. Next, we discuss FP equations in unbounded domains. In this case, finite-difference or finite-element methods cannot be applied. By employing a suitable set of basis functions, spectral methods allow to treat unbounded domains. Since FP solutions decay exponentially at infinity, we consider Hermite functions as basis functions, which are Hermite polynomials multiplied by a Gaussian. To this end, the Hermite spectral discretization is applied to two different FP equations; the parabolic PDE corresponding to Ito processes, and the system of hyperbolic PDEs corresponding to a PDP process. The resulting discretized schemes are analyzed. Stability and spectral accuracy of the Hermite spectral discretization of the FP problems is proved. Furthermore, we investigate the conservativity of the solutions of FP equations discretized with the Hermite spectral scheme. In the last part of this thesis, we discuss optimal control problems governed by FP equations on the characterization of their solution by optimality systems. We then investigate the Hermite spectral discretization of FP optimality systems in unbounded domains. Within the framework of Hermite discretization, we obtain sparse-band systems of ordinary differential equations. We analyze the accuracy of the discretization schemes by showing spectral convergence in approximating the state, the adjoint, and the control variables that appear in the FP optimality systems. To validate our theoretical estimates, we present results of numerical experiments.
• Die Fokker-Planck (FP) Gleichung ist ein grundlegendes Modell in thermodynamischen kinetischen Theorien und der statistischen Mechanik. Die FP-Gleichungen sind partielle Differentialgleichungen (PDE), welche die zeitliche Entwicklung der Wahrscheinlichkeitsdichtefunktion (PDF) von stochastischen Prozessen beschreiben. Diese Gleichungen sind von verschiedenen Arten, abhängig von dem zugrunde liegenden stochastischen Prozess. Insbesondere sind dies parabolische PDEs für die PDF von Ito Prozessen, und hyperbolische PDEs für teilweiseDie Fokker-Planck (FP) Gleichung ist ein grundlegendes Modell in thermodynamischen kinetischen Theorien und der statistischen Mechanik. Die FP-Gleichungen sind partielle Differentialgleichungen (PDE), welche die zeitliche Entwicklung der Wahrscheinlichkeitsdichtefunktion (PDF) von stochastischen Prozessen beschreiben. Diese Gleichungen sind von verschiedenen Arten, abhängig von dem zugrunde liegenden stochastischen Prozess. Insbesondere sind dies parabolische PDEs für die PDF von Ito Prozessen, und hyperbolische PDEs für teilweise deterministische Prozesse (PDP). Ein grundlegendes Axiom der Wahrscheinlichkeitsrechnung verlangt, dass das Integral der PDF über den ganzen Raum für alle Zeit muss gleich sein muss. Daher muss eine diskretisierte FP Gleichung Konservativität der Gesamtwahrscheinlichkeit garantieren. Da die Lösung der FP Gleichung eine Wahrscheinlichkeitsdichte darstellt, muss das numerische Verfahren, das die FP-Gleichung approximiert, die Positivität der Lösung gewährleisten. Darüber hinaus muss ein Approximationsschema genau und stabil sein. Für FP-Gleichungen auf begrenzte Bereiche untersuchen wir das Chang-Cooper (CC) Schema. Wir beweisen, dass die Diskretisierungsmethoden genau, bedingt stabil und konservativ sind, und Positivität bewahren. Als nächstes diskutieren wir FP Gleichungen in unbeschränkten Gebieten und wir wählen die Hermite spektrale Diskretisierung. Die resultierenden diskretisierten Schemata werden analysiert. Stabilität und spektrale Genauigkeit der Hermiten spektralen Diskretisierung ist bewiesen. Darüber hinaus untersuchen wir die Konservativität der numerischen Lösungen der FP Gleichungen. Im letzten Teil dieser Arbeit diskutieren wir Probleme der optimalen Steuerung, die von FP Gleichungen geregelt werden. Wir untersuchen dann die Hermite spektrale Diskretisierung von FP Optimalitätssystemen in unbeschränkten Gebieten. Wir erhalten spärliche Band-Systeme gewöhnlicher Differentialgleichungen. Wir analysieren die Genauigkeit der Diskretisierungsmethoden, indem wir spektrale Konvergenz bei der Annäherung des zustandes, das Adjoint, und die Stellgrößen, die in den FP Optimalitätssystemen erscheinen, aufzeigen. Um unsere theoretischen Schätzungen zu bestätigen, präsentieren wir Ergebnisse von numerischen Experimenten.