Development Of Three-Dimensional Liver Models For Drug Development And Therapeutical Applications
Entwicklung eines dreidimensionalen Lebermodels für Wirkstoffentwicklung und therapeutische Anwendungen
Please always quote using this URN: urn:nbn:de:bvb:20-opus-113155
- Primary human liver cells such as hepatocytes when isolated and cultured in 2D monolayers, de-differentiate and lose their phenotypic characteristics. In order to maintain the typical polygonal shape of the hepatocytes and their polarization with respect to the neighbouring cells and extra cellular matrix (ECM), it is essential to culture the cells in a three-dimensional (3D) environment. There are numerous culturing techniques available to retain the 3D organization including culturing hepatocytes between two layers of collagen and/orPrimary human liver cells such as hepatocytes when isolated and cultured in 2D monolayers, de-differentiate and lose their phenotypic characteristics. In order to maintain the typical polygonal shape of the hepatocytes and their polarization with respect to the neighbouring cells and extra cellular matrix (ECM), it is essential to culture the cells in a three-dimensional (3D) environment. There are numerous culturing techniques available to retain the 3D organization including culturing hepatocytes between two layers of collagen and/or MatrigelTM (Moghe et al. 1997) or in 3D scaffolds (Burkard et al. 2012). In this thesis, three different 3D hepatic models were investigated. 1. To reflect the in vivo situation, the hepatocytes were cultured in 3D synthetic scaffolds called Mimetix®. These were generated using an electrospinning technique using biodegradable polymers. The scaffolds were modified to increase the pore size to achieve an optimal cell function and penetration into the scaffolds, which is needed for good cell-cell contact and to retain long-term phenotypic functions. Different fibre diameters, and scaffold thicknesses were analyzed using upcyte® hepatocytes. The performance of upcyte® hepatocytes in 3D scaffolds was determined by measuring metabolic functions such as cytochrome P450 3A4 (CYP3A4) and MTS metabolism. 2. Apart from maintaining the hepatocytes in 3D orientation, co-culturing the hepatocytes with other non-parenchymal cell types, such as liver sinusoidal endothelial cells (LSECs) and mesenchymal stem cells (MSCs), better reflects the complexity of the liver. Three different upcyte® cell types namely, hepatocytes, LSECs and MSCs, were used to generated 3D liver organoids. The liver organoids were generated and cultured in static and dynamic conditions. Dynamic conditions using Quasi-vivo® chambers were used to reflect the in vivo blood flow. After culturing the cells for 10 days, the structural orientation of cells within the organoids was analyzed. Functional integrity was investigated by measuring CYP3A4 activities. The organoids were further characterized using in situ hybridization for the expression of functional genes, albumin and enzymes regulating glutamine and glucose levels. 3. An ex vivo bioreactor employing a decellularized organic scaffold called a “Biological Vascularized Scaffold” (BioVaSc) was established. Jejunum of the small intestine from pigs was chemically decellularized by retaining the vascular system. The vascular tree of the BioVaSc was repopulated with upcyte® microvascular endothelial cells (mvECs). The lumen of the BioVaSc was then used to culture the liver organoids generated using upcyte® hepatocytes, LSECs and MSCs. The structural organisation of the cells within the organoids was visualized using cell-specific immunohistochemical stainings. The performance of liver organoids in the BioVaSc was determined according to metabolic functions (CYP3A4 activities). This thesis also addresses how in vitro models can be optimized and then applied to drug development and therapy. A comprehensive evaluation was conducted to investigate the application of second-generation upcyte® hepatocytes from 4 donors for inhibition and induction assays, using a selection of reference inhibitors and inducers, under optimized culture conditions. CYP1A2, CYP2B6, CYP2C9 and CYP3A4 were reproducibly inhibited in a concentration-dependent manner and the calculated IC50 values for each compound correctly classified them as potent inhibitors. Upcyte® hepatocytes were responsive to prototypical CYP1A2, CYP2B6, CYP2C9 and CYP3A4 inducers, confirming that they have functional AhR, CAR and PXR mediated CYP regulation. A panel of 11 inducers classified as potent, moderate or non-inducers of CYP3A4 and CYP2B6 were tested. Three different predictive models for CYP3A4 induction, namely the Relative Induction Score (RIS), AUCu/F2 and Cmax,u/Ind50 were analyzed. In addition, PXR (rifampicin) and CAR-selective (carbamazepine and phenytoin) inducers of CYP3A4 and CYP2B6 induction, respectively, were also demonstrated. Haemophilia A occurs due to lack of functional Factor VIII (FVIII) protein in the blood. Different types of cells from hepatic and extrahepatic origin produce FVIII. Supernatants harvested from primary LSECs were evaluated for the presence of secreted functional FVIII. In order to increase the FVIII production, different upcyte® endothelial cells such as blood outgrowth endothelial cells (BOECs), LSECs and mvECs were transduced with lentiviral particles carrying a FVIII transgene. Also, to reflect a more native situation, primary mvECs were selected and modified by transducing them with FVIII lentivirus and investigated as a potential method for generating this coagulation factor.…
- Primäre humane Leberzellen wie beispielsweise Hepatozyten de-differenzieren und verlieren ihre phänotypischen Eigenschaften, wenn man sie isoliert und in 2D Monoschicht kultiviert. Um die typische, polygonale Form der Hepatozyten und ihre Polarisation gegenüber den benachbarten Zellen und der extrazellulären Matrix (EZM) zu erhalten, ist es essentiell die Zellen in einer dreidimensionalen (3D) Umgebung zu kultivieren. Es sind zahlreiche Techniken verfügbar, um die 3D-Organisation zu erhalten wie beispielsweise die Kultur von HepatozytenPrimäre humane Leberzellen wie beispielsweise Hepatozyten de-differenzieren und verlieren ihre phänotypischen Eigenschaften, wenn man sie isoliert und in 2D Monoschicht kultiviert. Um die typische, polygonale Form der Hepatozyten und ihre Polarisation gegenüber den benachbarten Zellen und der extrazellulären Matrix (EZM) zu erhalten, ist es essentiell die Zellen in einer dreidimensionalen (3D) Umgebung zu kultivieren. Es sind zahlreiche Techniken verfügbar, um die 3D-Organisation zu erhalten wie beispielsweise die Kultur von Hepatozyten zwischen zwei Schichten von Kollagen und/oder MatrigelTM (Moghe et al. 1997) oder in einem 3D Gerüst (Burkard et al. 2012). In dieser Arbeit wurden 3 verschiedene, hepatische 3D Modelle untersucht. 1. Um die in vivo Situation widerzuspiegeln, wurden die Hepatozyten in einer synthetischen 3D Matrix namens Mimetix® kultiviert. Diese wurde aus biologisch abbaubaren Polymeren elektrogesponnen. Die Matrix wurde modifiziert indem die Poren vergrößert wurden, um eine optimale Besiedlung des Zellgerüsts und dadurch eine gesteigerte Zellfunktionalität zu erreichen. Dies wird sowohl für die Ausbildung von Zell-Zell-Kontakten wie auch für den Erhalt der phänotypischen Funktionen über einen längeren Zeitraum hin benötigt. Unterschiedliche Faserdurchmesser und Matrixschichtdicken wurden mittels upcyte® Hepatozyten analysiert. Die Leistungsfähigkeit der upcyte® Hepatozyten wurde durch die Messung metabolischer Funktionen bestimmt, wie beispielsweise Cytochrom P450 3A4 (CYP3A4) und MTS Metabolismus. 2. Abgesehen vom Erhalt der 3D Orientierung der Hepatozyten, hilft eine Ko-Kultur der Hepatozyten mit anderen nicht-parenchymalen Zelltypen wie beispielsweise leber-sinusoidalen Endothelzellen (LSECs) und mesenchymalen Stammzellen (MSCs) die Komplexität der Leber darzustellen. Drei unterschiedliche upcyte® Zelltypen, das heißt Hepatozyten, LSECs und MSCs wurden eingesetzt, um 3D Leberorganoide zu generieren. Die Leberorganoide wurden in statischen Zellkulturbedingungen generiert und dynamischen Bedingungen kultiviert. Durch den Quasi-vivo Bioreaktor als dynamisches Zellkultursystem wurde der Blutstrom in vivo widergespiegelt. Nach einer Kulturdauer von 10 Tagen wurde die strukturelle Organisation der Zellen innerhalb der Organoide analysiert. Die Funktionalität wurde durch Messungen der CYP3A4 Enzymaktivitäten untersucht. Darüber hinaus wurden die Organoide mittels in situ Hybridisierung auf die Expression von funktionalen Genen, Albumin sowie Glutamin- und Glukose-regulierende Enzyme hin analysiert. 3. Es wurde ein ex vivo Bioreaktor etabliert, dessen Grundlage ein dezellularisiertes Zellgerüst namens ‚Biological Vascularized Scaffold‘ (BioVaSc) bildet. Hierfür wurde das Jejunum vom Dünndarm des Hausschweins chemisch dezellularisiert, wobei gleichzeitig das vaskuläre System erhalten wurde. Dieses Gefäßsystem wurde dann mit upcyte® humanen dermalen mikrovaskulären Endothelzellen (HDMECs) besiedelt. Das Lumen der BioVaSc wurde anschließend benutzt, um darin die Leberorganoide, die aus den upcyte® Hepatozyten, LSECs und MSCs generiert wurden, zu kultivieren. Die strukturelle Organisation der Zellen innerhalb der Organoide wurde mittels zell-spezifischer, immunhistochemischer Färbungen visualisiert. Die Funktionalität der Leberorganoide in der BioVaSc wurde anhand von metabolischer Aktivität (CYP3A4 Enzymaktivität) bestimmt. Diese Arbeit beschäftigt sich auch mit der Fragestellung, wie in vitro Modelle optimiert werden können, um sie schlussendlich für die Wirkstoffentwicklung aber auch zelltherapeutische Anwendungen einsetzen zu können. Eine umfassende Untersuchung wurde durchgeführt, um zu untersuchen inwiefern 4 Donoren der zweiten upcyte® Hepatozyten Generation für Inhibitions- und Induktionsstudien geeignet sind. Hierfür wurde eine Auswahl an Referenzinhibitoren und – induktoren unter optimierten Kulturbedingungen eingesetzt. CYP1A2, CYP2B6, CYP2C9 und CYP3A4 konnten durch den Einsatz von Inhibitoren reproduzierbar, konzentrationsabhängig inhibiert werden und die berechneten IC50-Werte klassifizierte jede Substanz korrekt als potenten Inhibitor. Upcyte® Hepatozyten reagierten auf proto-typische CYP1A2-, CYP2B6-, CYP2C9- und CYP3A4-Induktoren, wodurch eine funktionale AhR-, CAR- und PXR-vermittelte Regulation der jeweiligen CYP Enzymaktivität bestätigt werden konnte. Eine Sammlung von 11 Induktoren, die für CYP2B6 sowie CYP3A4 als potent, moderat potent und nicht potent klassifiziert sind wurden analysiert. Drei unterschiedliche Vorhersage-Modelle für die Induktion von CYP3A4 wurden analysiert, der (I) ‚Relative Induction Score (RIS), (II) AUCu/F2 und (III) Cmax,u. Darüber hinaus wurden PXR-selektive (Rifampicin) und CAR-selektive (Carbamazepin und Phenytoin) Induktoren für eine CYP3A4- und CYP2B6-Induktion gezeigt. Hämophilie A tritt aufgrund eines Mangels an funktionalem Faktor VIII protein (FVIII) im Blut auf. Verschiedene Zelltypen hepatischen und extra-hepatischen Ursprungs produzieren FVIII. Zellkulturüberstände von primären LSECs wurden abgenommen und hinsichtlich des Vorhandenseins von sekretiertem FVIII untersucht. Um die FVIII-Produktion zu steigern, wurden unterschiedliche upcyte® Endothelzellen, wie beispielsweise ‚blood outgrowth endothelial cells‘ (BOECs), LSECs und HDMECs, mit lentiviralen Partikeln, die ein FVIII Transgen tragen transduziert. Um eine nativere Situation widerzuspiegeln, wurden primäre HDMECs ausgewählt, um sie mittels Transduktion von FVIII lentiviralen Partikeln zu modifizieren, zu selektionieren und im Anschluss hinsichtlich ihres Potentials zur Bildung des Koagulationsfaktors FVIII zu untersuchen.…
Author: | Sarada Devi Ramachandran |
---|---|
URN: | urn:nbn:de:bvb:20-opus-113155 |
Document Type: | Doctoral Thesis |
Granting Institution: | Universität Würzburg, Graduate Schools |
Faculties: | Graduate Schools / Graduate School of Life Sciences |
Referee: | Prof. Dr. Heike Walles |
Date of final exam: | 2015/05/05 |
Language: | English |
Year of Completion: | 2015 |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie |
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit | |
GND Keyword: | Leberepithelzelle; Dimension 3; Zellkultur |
Tag: | 3-D liver model; Therapeutical application; drug development |
Release Date: | 2016/05/09 |
Licence (German): | CC BY-NC: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell |