Electrophysiological characterisation of motor and sensory tracts in patients with hereditary spastic paraplegia (HSP)

Please always quote using this URN: urn:nbn:de:bvb:20-opus-124763
  • Background: Hereditary spastic paraplegias (HSPs) are characterised by lower limb spasticity due to degeneration of the corticospinal tract. We set out for an electrophysiological characterisation of motor and sensory tracts in patients with HSP. Methods: We clinically and electrophysiologically examined a cohort of 128 patients with genetically confirmed or clinically probable HSP. Motor evoked potentials (MEPs) to arms and legs, somato-sensory evoked potentials of median and tibial nerves, and nerve conduction studies of tibial, ulnar,Background: Hereditary spastic paraplegias (HSPs) are characterised by lower limb spasticity due to degeneration of the corticospinal tract. We set out for an electrophysiological characterisation of motor and sensory tracts in patients with HSP. Methods: We clinically and electrophysiologically examined a cohort of 128 patients with genetically confirmed or clinically probable HSP. Motor evoked potentials (MEPs) to arms and legs, somato-sensory evoked potentials of median and tibial nerves, and nerve conduction studies of tibial, ulnar, sural, and radial nerves were assessed. Results: Whereas all patients showed clinical signs of spastic paraparesis, MEPs were normal in 27% of patients and revealed a broad spectrum with axonal or demyelinating features in the others. This heterogeneity can at least in part be explained by different underlying genotypes, hinting for distinct pathomechanisms in HSP subtypes. In the largest subgroup, SPG4, an axonal type of damage was evident. Comprehensive electrophysiological testing disclosed a more widespread affection of long fibre tracts involving peripheral nerves and the sensory system in 40%, respectively. Electrophysiological abnormalities correlated with the severity of clinical symptoms. Conclusions: Whereas HSP is primarily considered as an upper motoneuron disorder, our data suggest a more widespread affection of motor and sensory tracts in the central and peripheral nervous system as a common finding in HSP. The distribution patterns of electrophysiological abnormalities were associated with distinct HSP genotypes and could reflect different underlying pathomechanisms. Electrophysiological measures are independent of symptomatic treatment and may therefore serve as a reliable biomarker in upcoming HSP trials.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Kathrin N. Karle, Rebecca Schüle, Stephan Klebe, Susanne Otto, Christian Frischholz, Inga Liepelt-Scarfone, Ludger Schöls
URN:urn:nbn:de:bvb:20-opus-124763
Document Type:Journal article
Faculties:Medizinische Fakultät / Neurologische Klinik und Poliklinik
Language:English
Parent Title (English):Orphanet Journal of Rare Diseases
ISSN:1750-1172
Year of Completion:2013
Volume:8
Issue:158
Source:Orphanet Journal of Rare Diseases 2013, 8:158. doi:10.1186/1750-1172-8-158
DOI:https://doi.org/10.1186/1750-1172-8-158
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 614 Inzidenz und Prävention von Krankheiten
Tag:ALSIN gene; SPG4; Silver-syndrome; amyotrophic-lateral-sclerosis; electrophysiology; gene mutations; hereditary spastic paraplegia (HSP); motor evoked potential (MEP); mouse model; neuropathy; paraparesis; protein; somatosensory-evoked-potentials
Release Date:2016/03/02
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung