The Effect of Diiodooctane on the Charge Carrier Generation in Organic Solar Cells Based on the Copolymer PBDTTT-C
Please always quote using this URN: urn:nbn:de:bvb:20-opus-125022
- Microstructural changes and the understanding of their effect on photocurrent generation are key aspects for improving the efficiency of organic photovoltaic devices. We analyze the impact of a systematically increased amount of the solvent additive diiodooctane (DIO) on the morphology of PBDTTT-C:PC71BM blends and related changes in free carrier formation and recombination by combining surface imaging, photophysical and charge extraction techniques. We identify agglomerates visible in AFM images of the 0% DIO blend as PC71BM domains embeddedMicrostructural changes and the understanding of their effect on photocurrent generation are key aspects for improving the efficiency of organic photovoltaic devices. We analyze the impact of a systematically increased amount of the solvent additive diiodooctane (DIO) on the morphology of PBDTTT-C:PC71BM blends and related changes in free carrier formation and recombination by combining surface imaging, photophysical and charge extraction techniques. We identify agglomerates visible in AFM images of the 0% DIO blend as PC71BM domains embedded in an intermixed matrix phase. With the addition of DIO, a decrease in the size of fullerene domains along with a demixing of the matrix phase appears for 0.6% and 1% DIO. Surprisingly, transient absorption spectroscopy reveals an efficient photogeneration already for the smallest amount of DIO, although the largest efficiency is found for 3% DIO. It is ascribed to a fine-tuning of the blend morphology in terms of the formation of interpenetrating donor and acceptor phases minimizing geminate and nongeminate recombination as indicated by charge extraction experiments. An increase in the DIO content to 10% adversely affects the photovoltaic performance, most probably due to an inefficient free carrier formation and trapping in a less interconnected donor-acceptor network.…
Author: | Andreas Zusan, Björn Gieseking, Mario Zerson, Vladimir Dyakonov, Robert Magerle, Carsten Deibel |
---|---|
URN: | urn:nbn:de:bvb:20-opus-125022 |
Document Type: | Journal article |
Faculties: | Fakultät für Physik und Astronomie / Physikalisches Institut |
Language: | English |
Parent Title (English): | Scientific Reports |
Year of Completion: | 2015 |
Volume: | 5 |
Pagenumber: | 8286 |
Source: | SCIENTIFIC REPORTS 5 : 8286. DOI: 10.1038/srep08286 (2015) |
DOI: | https://doi.org/10.1038/srep08286 |
Dewey Decimal Classification: | 6 Technik, Medizin, angewandte Wissenschaften / 62 Ingenieurwissenschaften / 621 Angewandte Physik |
Tag: | electronic properties and materials; photonic devices |
Release Date: | 2016/02/02 |
Collections: | Open-Access-Publikationsfonds / Förderzeitraum 2015 |
Licence (German): | CC BY: Creative-Commons-Lizenz: Namensnennung |