Theoretical Investigations on the Interactions of Small Compounds with their Molecular Environments

Theoretische Untersuchungen der Wechselwirkungen Kleiner Moleküle mit deren Molekularen Umgebungen

Please always quote using this URN: urn:nbn:de:bvb:20-opus-127860
  • In the first part of this work, a combination of theoretical methods for the rational design of covalent inhibitor is presented. Starting from the crystal structure of the covalent complex of a lead compound, quantum mechanical and QM/MM calculations were used to derive the exact geometry of the preceeding non-covalent enzyme inhibitor complex. The geometry of the latter mainly determines the reactivity of the inhibitor against its target enzyme concerning the formation of the covalent bond towards an active site residue. Therefore, thisIn the first part of this work, a combination of theoretical methods for the rational design of covalent inhibitor is presented. Starting from the crystal structure of the covalent complex of a lead compound, quantum mechanical and QM/MM calculations were used to derive the exact geometry of the preceeding non-covalent enzyme inhibitor complex. The geometry of the latter mainly determines the reactivity of the inhibitor against its target enzyme concerning the formation of the covalent bond towards an active site residue. Therefore, this geometry was used as starting point for the optimization of the substitution pattern of the inhibitor such as to increase its binding affinity without loosing its ability to covalently bind to the target protein. The optimization of the chemical structure was supported by using docking procedures, which are best suited to estimate binding affinities that arise from the introduced changes. A screening of the novel substitution patterns resulted in a first generation of model compounds which were further tested for their reactivity against the target. Dynamic simulations on the novel compounds revealed that the orientation that compounds adopt within the active site are such that a covalent interaction with the enzyme is no longer possible. Hence, the chemical structure was further modified, including not only changes in the substituents but also within the core of the molecule. Docking experiments have been conducted to assure sufficiently high binding affinities and to obtain the most favored binding poses. Those have then again been used for dynamic simulations which resulted in structures, for which the bond formation process appeared feasible. A final series of QM/MM calculations considering various protonation states was computed to estimate the reaction energies for the covalent attachment of the inhibitor to the enzyme. The theoretical results indicate a reasonable high inhibition potency of the novel compounds. The second part concentrates on the environmental influences on the electron density of an inhibitor molecule. Therefore, a vinylsulfone-based model compound was selected for which an experimental crystal structure for the pure compound as well as a theoretically determined enzyme-inhibitor complex have been available. To provide reference data for the larger systems, the conformational space of the isolated molecule was screened for favorable geometries which were later compared to those within the crystal and protein surrounding. The geometry of the crystal structure could readily be taken from the experimental data whereas calculations on the protein complex revealed four potential non-covalent complexes exhibiting different arrangements of the molecule within the active site of the protein as well as two possible protonation states of the catalytic dyad. Hence, all four protein complexes have been compared to the crystal structure of the molecule as well as against the more favorable geometries of the isolated molecule being determined within vacuum or aqueous surrounding. Whereas the molecule itself was found to adopt comparable geometries within all investigated environments, the interactions pattern between the crystal surrounding and the protein differed largely from each other. The favorable formation of dimers within the crystal has a strong stabilizing effect and explains the extraordinarily good quality of the crystal. Within the protein however, repulsive forces have been found between the protein and the inhibitor. The origin of the repulsion could be traced back to effect of on of the substituents to the vinyl scaffold. The difference in the chemical structure in comparison to a well known inhibitor might also explain the experimentally found loss of activity for the model compound in comparison to K11777.show moreshow less
  • Im ersten Teil dieser Arbeit wird eine Kombination theoretischer Methoden für die strukturbasierte Entwicklung neuer Wirkstoffe präsentiert. Ausgehend von der Kristallstruktur eines kovalenten Komplexes einer Modellverbindung mit dem Zielprotein wurde mit Hilfe von quantenmechanischen und QM/MM Rechnungen die genaue Geometrie des vorausgehenden nicht-kovalenten Komplexes betimmt. Letztere ist der bestimmende Faktor für die Reaktivität des Inhibitors gegenüber der katalytisch aktiven Aminosäure und damit für die Ausbildung einer kovalentenIm ersten Teil dieser Arbeit wird eine Kombination theoretischer Methoden für die strukturbasierte Entwicklung neuer Wirkstoffe präsentiert. Ausgehend von der Kristallstruktur eines kovalenten Komplexes einer Modellverbindung mit dem Zielprotein wurde mit Hilfe von quantenmechanischen und QM/MM Rechnungen die genaue Geometrie des vorausgehenden nicht-kovalenten Komplexes betimmt. Letztere ist der bestimmende Faktor für die Reaktivität des Inhibitors gegenüber der katalytisch aktiven Aminosäure und damit für die Ausbildung einer kovalenten Bindung. Aus diesem Grund wurde diese Geometrie auch für die Optimierung der Substitutionsmusters des Ihnibitors verwendet, um dessen Affinität zum Zielenzyme zu verbessern ohne dass dieser seine Fähigkeit kovalent an das aktive Zentrum zu binden verliert. Die Optimierung des Substitutionsmuster wurde doch Methode des Molekularen Dockings unterstützt, das diese optimal dazu geeignet sind, Bindungsaffinitäten vorherzusagen, die durch eine Modifikation der chemischen Struktur entstehen. Eine Auswahl der besten Strukturen wurde anschließend verwendet, um zu überprüfen, ob die veränderten Moleküle noch genügen Reaktivität gegenüber dem Zielprotein aufweisen. Moleküldynamik Simulationen der neuen Verbindungen haben jedoch gezeigt, dass die veränderten Verbindungen nur so and das Protein binden, dass die Bilung eine kovalenten Bindung zum Enzym nicht mehr möglich ist. Daher wurden in einem weiteren Schritt die Modellverbindungen weiter modifiziert. Neben Änderungen im Substitutionsmuster wurde auch die chemische Struktur im Kern verändert. Die Bindungsaffinitäten wurde wieder mittels Docking überprüft. Für die besten Bindungsposen wurden wieder Simulationen zur Moleküldynamik durchgeführt, wobei diesmal die Ausbildung einer kovalenten Bindung zum Enzyme möglich erscheint. In einer abschließenden Serie von QM/MM Rechnungen unter Berücksichtigung verschiedener Protonierungszustände des Inhibitors und des Proteins konnten Reaktionspfade und zugehörige Reaktionsenergien bestimmt werden. Die Ergebnisse lassen darauf schließen, dass eines der neu entwickelten Moleküle sowohl eine stark verbesserte Bindungsaffinität wie auch die Möglichkeit der kovalenten Bindung an Enzyme aufweist. Der zweite Teil der Arbeit konzentriert sich auf die Umgebungseinflüsse auf die Elektronenverteilung eines Inhibitormodells. Als Grundlage dient ein vinylsulfon-basiertes Moekül, für das eine experimentell bestimmte Kristallstruktur sowie ein theoretisch berechneter Protein Komplex verfügbar sind. Ein Referendatensatz für diese Systeme wurde erstellt, indem der Konformationsraum des Inhibitors nach möglichen Minimumsstrukturen abgesucht wurde, welche später mit den Geometrien des Moleküls im Kristall und im Protein verglichen werden konnten. The Geometrie in der Kristallumgebung konnte direkt aus den experimentellen Daten übernommen werden. Rechnungen zum nicht-kovalenten Protein Komplex hingegen haben gezeigt, dass für das Modellsystem mehrere Geometrien des Inhibiors sowie zwei Protonierungszustände für die katalytisch aktiven Aminosäuren möglich sind. Für die Analyse wurden daher alle möglichen Proteinkomplexe mit der Kristallstruktur verglichen. Ebenso wurden Vergleiche mit der Geometrie des isolierten Moleküls im Vakuum sowie der Geometrie in wässriger Lösung angestellt. Für die Geometrie des Moleküls an sich ergab sich eine gute Übereinstimmung für alle Modellsysteme, für die Wechselwirkungen mit der Umgebung jedoch nicht. Die Ausbildung von Dimeren in der Kristallumgebung hat einen stark stablisierenden Effekt und ist einer der Gründe, warum dieser Kristall so gut wie keine Fehlordungen aufweist. In den Proteinkomplexen hingegen ergibt sich eine Abstoßung zwischen dem Inhibitor und einer der katalytisch aktiven Aminosäuren. Als Ursache für diese Abstoßung konnte die Einführung der Methylaminfunktion ausgemacht werden. Vermutlicherweise führt diese strukturelle Änderung auch dazu, dass der Modellinhibitor nicht in der Lage ist, so wie die Leitstruktur K11777 an das aktive Zentrum des Enzyms zu binden.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Thomas Christian Schmidt
URN:urn:nbn:de:bvb:20-opus-127860
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Chemie und Pharmazie
Faculties:Fakultät für Chemie und Pharmazie / Institut für Physikalische und Theoretische Chemie
Referee:Prof. Dr. Bernd Engels
Date of final exam:2016/02/24
Language:English
Year of Completion:2015
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
GND Keyword:Theoretische Chemie; Elektronendichte; Inhibitor
Tag:electron density; inhibition; theoretical chemistry
CCS-Classification:I. Computing Methodologies
MSC-Classification:92-XX BIOLOGY AND OTHER NATURAL SCIENCES
PACS-Classification:30.00.00 ATOMIC AND MOLECULAR PHYSICS
JEL-Classification:C Mathematical and Quantitative Methods
Release Date:2016/02/26
Licence (German):License LogoDeutsches Urheberrecht