The CarO rhodopsin of the fungus Fusarium fujikuroi is a light-driven proton pump that retards spore germination
Please always quote using this URN: urn:nbn:de:bvb:20-opus-149049
- Rhodopsins are membrane-embedded photoreceptors found in all major taxonomic kingdoms using retinal as their chromophore. They play well-known functions in different biological systems, but their roles in fungi remain unknown. The filamentous fungus Fusarium fujikuroi contains two putative rhodopsins, CarO and OpsA. The gene carO is light-regulated, and the predicted polypeptide contains all conserved residues required for proton pumping. We aimed to elucidate the expression and cellular location of the fungal rhodopsin CarO, its presumedRhodopsins are membrane-embedded photoreceptors found in all major taxonomic kingdoms using retinal as their chromophore. They play well-known functions in different biological systems, but their roles in fungi remain unknown. The filamentous fungus Fusarium fujikuroi contains two putative rhodopsins, CarO and OpsA. The gene carO is light-regulated, and the predicted polypeptide contains all conserved residues required for proton pumping. We aimed to elucidate the expression and cellular location of the fungal rhodopsin CarO, its presumed proton-pumping activity and the possible effect of such function on F. fujikuroi growth. In electrophysiology experiments we confirmed that CarO is a green-light driven proton pump. Visualization of fluorescent CarO-YFP expressed in F. fujikuroi under control of its native promoter revealed higher accumulation in spores (conidia) produced by light-exposed mycelia. Germination analyses of conidia from carO\(^{-}\) mutant and carO\(^{+}\) control strains showed a faster development of light-exposed carO-germlings. In conclusion, CarO is an active proton pump, abundant in light-formed conidia, whose activity slows down early hyphal development under light. Interestingly, CarO-related rhodopsins are typically found in plant-associated fungi, where green light dominates the phyllosphere. Our data provide the first reliable clue on a possible biological role of a fungal rhodopsin.…
Author: | Jorge García-Martínez, Michael Brunk, Javier Avalos, Ulrich Terpitz |
---|---|
URN: | urn:nbn:de:bvb:20-opus-149049 |
Document Type: | Journal article |
Faculties: | Fakultät für Biologie / Theodor-Boveri-Institut für Biowissenschaften |
Language: | English |
Parent Title (English): | Scientific Reports |
Year of Completion: | 2015 |
Volume: | 5 |
Issue: | 7798 |
Source: | Scientific Reports 5:7798 (2015). DOI: 10.1038/srep07798 |
DOI: | https://doi.org/10.1038/srep07798 |
Dewey Decimal Classification: | 6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit |
Tag: | bacteriorhodopsin; channelrhodopsin-2; expression; gene; growth; intracellular pH; membrane proteins; microbial rhodopsins; mutants; virulence |
Release Date: | 2018/11/23 |
Licence (German): | CC BY-NC-ND: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell, Keine Bearbeitungen 4.0 International |