Component selectivity and multistability in a \(Drosophila\) orientation paradigm using incoherent motion stimuli
Komponenten-Selektivität und Multistabilität in einem Orientierungsparadigma für \(Drosophila\) unter Verwendung inkohärenter Bewegungsreize
Please always quote using this URN: urn:nbn:de:bvb:20-opus-153346
- Visual information is essential for Drosophila to navigate its environment. The visual system of the fly has been studied for many decades and has yielded many insights about vision in general. However, visual information can be ambiguous and the system processing it needs to be able to cope with that. In this study, the visual orientation behavior of Drosophila is challenged by panoramic incoherent motion stimuli to which the fly can respond in three different, equally adaptive ways. The study is conducted in a well-established setup, theVisual information is essential for Drosophila to navigate its environment. The visual system of the fly has been studied for many decades and has yielded many insights about vision in general. However, visual information can be ambiguous and the system processing it needs to be able to cope with that. In this study, the visual orientation behavior of Drosophila is challenged by panoramic incoherent motion stimuli to which the fly can respond in three different, equally adaptive ways. The study is conducted in a well-established setup, the so-called flight simulator (Heisenberg and Wolf, 1993), where the fly can control its visual surroundings in stationary flight with its yaw torque, which is simultaneously recorded. The fly can either use one of two incoherently moving panorama patterns or the integrated motion of both as its reference for straight flight. It is observed that flies use all three of these behavioral alternatives for orientation. Previous models of fly motion vision do not predict a bimodal tuning to incoherent wide-field motion stimuli (Joesch et al., 2008, Borst et al., 1995), however, a recent study on blowflies could suggests that they show component selectivity to the individual moving gratings in a compound plaid stimulus (Saleem et al., 2012). Here, it can be shown that the same bimodal tuning manifests in Drosophila, although the stimuli used are different and most of the experiments are conducted in closed loop. It is found that the extent to which the Drosophila expresses this component selectivity in its orientation behavior, i.e. how often it stabilizes a single panorama pattern instead of the integrated motion of both, depends on two properties of the panorama stimuli, pattern contrast and horizontal pattern element distance. Single pattern stabilization decreases with increasing contrast and increasing pattern element distance. In the latter case, it increases again when there are very few horizontal pattern elements, although that appears to be the result of a lack of rivalry between the patterns due to the low number of pattern elements. Both increased pattern contrast and pattern element distance increase the salience of the single pattern elements. A single element in a compound visual stimulus, like a dot within a dot pattern, can be interpreted as a standalone figure or a part of a bigger unit. Previous studies on Drosophila vision have concentrated on how the fly discriminates a figure from the background (Heisenberg and Wolf, 1984, Bahl et al., 2013, Aptekar et al., 2012), but have hardly touched the question of what qualifies a figure or a background (i.e. a panorama) stimulus as such. In the present study, it is observed that, when exposed to incoherent panoramic motion stimuli, the flies prefer to orient themselves towards the average of the two motions when the panorama stimuli possess strong figure features and towards the single patterns when they do not and single pattern elements are therefore less salient. The above-mentioned plaid stimuli are a well-known multistable percept in human psychophysics. Multistability is a property of higher visual systems and considered an indicator of endogenous activity in vision. As Drosophila expresses behavioral multistability in the IPMP, it is evaluated in this respect. The results show several parallels to human multistable perception. For one, the frequency and duration with which a behavior occurs, can be influenced, but the occurrence of the behaviors is non-deterministic and not coupled to the stimulus. It can also be shown that the switches between behaviors do not stem from a rivalry of the two visual hemispheres of the fly, although monocularity does also influence the likelihood with which the behaviors occur. Secondly, like in human perceptual rivalry, individual flies exhibit strong idiosyncrasies regarding the overall durations they spend with the different behaviors and the frequencies with which they switch between them. Finally, the distribution of the durations between the behavioral switches can be fit to the same function as the distribution of percept durations in human multistable perception, the gamma function, although it has a different shape and therefore also differing parameters. The Drosophila mutant radish, which has been shown to have attention-like deficits (van Swinderen and Brembs, 2010, Koenig et al., 2016a), does also express an altered behavior in the IPMP compared to wildtype flies. As these behavioral alterations resemble effects on multistable perception found in humans suffering from ADHD (Amador-Campos et al., 2015) and perceptual multistability is generally considered to be closely related to attention (Leopold and Logothetis, 1999), attentional processes are also very likely to play a role in the flies’ behavior in the IPMP. In conclusion, the visual system of Drosophila is capable disentangle incoherent motion stimuli even if they overlap and cover the entire visual field, i.e. it shows component selectivity of wide-field motion. Whether it uses a single wide-field motion component or the average of two as its reference for straight flight depends on pattern contrast and horizontal pattern element density, which indicates an involvement of a figure-background rivalry. This rivalry and the one between the two wide-field motion components elicit a multistability in the orientation behavior of the fly the temporal dynamics of which partially resemble the temporal dynamics of human multistable perception and which also suggests the involvement of attentional processes.…
- Visuelle Information ist von wesentlicher Bedeutung für Drosophila um sich in ihrer Umgebung zurecht zu finden. Das visuelle System der Fliege wird seit vielen Jahrzehnten untersucht und hat wichtige Erkenntnisse über Sehen im Allgemeinen hervorgebracht. Visuelle Information kann mehrdeutig sein und das System, das sie verarbeitet muss in der Lage sein damit umzugehen. In dieser Arbeit wird das visuelle Orientierungsverhalten von Drosophila durch inkohärente Großfeldbewegungen herausgefordert, auf die die Fliege auf drei verschiedene, gleichVisuelle Information ist von wesentlicher Bedeutung für Drosophila um sich in ihrer Umgebung zurecht zu finden. Das visuelle System der Fliege wird seit vielen Jahrzehnten untersucht und hat wichtige Erkenntnisse über Sehen im Allgemeinen hervorgebracht. Visuelle Information kann mehrdeutig sein und das System, das sie verarbeitet muss in der Lage sein damit umzugehen. In dieser Arbeit wird das visuelle Orientierungsverhalten von Drosophila durch inkohärente Großfeldbewegungen herausgefordert, auf die die Fliege auf drei verschiedene, gleich plausible Weisen reagieren kann. Die Studie wird in einem etablierten Versuchsaufbau durchgeführt, dem sogenannten Flugsimulator (Heisenberg and Wolf, 1993), in dem die Fliege im stationären Flug ihren visuellen Input mit ihrem Drehmoment kontrollieren kann. Die Fliege kann entweder eines von zwei sich inkohärent bewegenden Panoramamustern oder deren integrierte Gesamtbewegung als Referenz für ihren Geradeausflug nutzen. Es wird beobachtet, dass die Fliegen alle drei dieser Verhaltens-Alternativen zur Orientierung benutzen. Bisherige Modelle des Bewegungssehens der Fliege sagen keine bimodale Reaktion auf inkohärente Bewegungsreize vorher (Borst et al., 1995, Joesch et al., 2008), allerdings konnte kürzlich eine Studie an Calliphora zeigen, dass diese Komponenten-Selektivität bezüglich der einzelnen Bewegungen der Streifenmuster eines daraus zusammengesetzten Karomusters zeigen (Saleem et al., 2012). Hier kann gezeigt werden, dass diese bimodale Reaktion auch in Drosophila der Fall ist, obwohl die visuellen Stimuli unterschiedlich sind und die meisten Experimente im geschlossenen Regelkreis durchgeführt werden. Des weiteren zeigt sich, dass der Umfang in dem Drosophila diese Komponentenselektivität in ihrem Orientierungsverhalten zeigt, d.h. wie häufig sie ein einzelnes Panoramamuster statt der integrierten Bewegung von beiden stabilisiert, von zwei Eigenschaften des Musters, dem Musterkontrast und dem horizontalen Abstand der einzelnen Musterelemente, abhängt. Die Einzelmusterstabilisierung nimmt mit steigendem Kontrast und steigendem Musterelementabstand ab. Bei letzterem steigt sie wieder, wenn die Anzahl der horizontalen Musterelemente sehr gering ist, allerdings scheint dies das Ergebnis von fehlender Konkurrenz zwischen den Mustern aufgrund der niedrigen Anzahl der Musterelemente zu sein. Sowohl gesteigerter Kontrast und Musterelementabstand steigern das Hervorstechen der einzelnen Musterelemente. Ein einzelnes Element in einem zusammengesetzen visuellen Stimulus, wie ein Punkt in einem Punktemuster, kann sowohl als alleinstehendes Objekt als auch als Teil einer größeren Einheit interpretiert werden. Bisherige Studien am visuellen System von Drosophila haben sich darauf konzentriert, wie die Fliege ein Objekt vom Hintergrund unterscheidet (Aptekar et al., 2012, Bahl et al., 2013, Heisenberg and Wolf, 1984), aber kaum behandelt, was ein Objekt oder einen Hintergrund als solchen definiert. In dieser Studie wird beobachtet, dass die Fliege, wenn sie mit zwei sich inkohärent bewegenden Panoramastimuli konfrontiert wird, es bevorzugt sich am Mittelwert der beiden Bewegungen zu orientieren, wenn diese starke Objekteigenschaften aufweisen und an den Einzelmustern, wenn sie dies nicht der Fall ist und die einzelnen Musterelement daher weniger stark hervorstehen. Die erwähnten Karomusterreize sind ein bekanntes Beispiel multistabiler Wahrnehmung der Humanpsychophysik. Multistabilität ist eine Eigenschaft höherer visueller Systeme und ein Indikator von endogener Aktivität. Da Drosophila Multistabilität in ihrem Verhalten im IPMP aufweist, wird es diesbezüglich ausgewertet. Die Ergebnisse zeigen mehrere Parallelen zur menschlichen multistabilen Wahrnehmung. Zum einen kann die Häufigkeit und die Dauer mit der ein Verhalten auftritt, beeinflusst werden, aber das Auftreten der Verhaltensweisen ist nicht deterministisch und nicht an den Stimulus gekoppelt. Es kann auch gezeigt werden, dass die Wechsel zwischen den Verhaltensweisen nicht von einer Rivalität zwischen den beiden visuellen Hemisphären der Fliege herrühren, obwohl Monokularität die Wahrscheinlichkeit mit der die Verhaltensweisen auftreten, beeinflusst. Zweitens weisen die einzelnen Fliegen, wie auch Menschen in multistabilen Wahrnehmungsparadigmen, starke Idiosynkrasien bezüglich der Gesamtdauer, die sie mit einem Verhalten verbringen und der Häufigkeit mit der sie zwischen diesen hin und her wechseln, auf. Schließlich folgt die Verteilung der Zeitspannen zwischen den Wechseln zwischen den Verhaltensweisen der gleichen Funktion wie die Verteilung der Wahrnehmungsdauern in der menschlichen multistabilen Wahrnehmung, der Gamma-Funktion, obwohl sie eine unterschiedliche Form hat und daher auch andere Parameter. Die Drosophila-Mutante radish, von der gezeigt werden konnte, dass sie aufmerksamkeits-ähnliche Defizite hat (van Swinderen and Brembs, 2010, Koenig et al., 2016a), zeigt im Vergleich mit wildtypischen Fliegen auch im IPMP ein verändertes Verhalten. Da diese Veränderungen Effekten auf multistabile Wahrnehmung ähneln, die bei ADHS-Patienten gefunden wurden (Amador-Campos et al., 2015) und multistabile Wahrnehmung im Allgemeinen als nahe verwandt mit Aufmerksamkeit angesehen wird (Leopold and Logothetis, 1999), spielen Aufmerksamkeitsprozesse sehr wahrscheinlich auch eine Rolle im Verhalten der Fliege im IPMP. Zusammenfassend kann gesagt werden, dass das visuelle System von Drosophila in der Lage ist inkohärente Bewegungsreize sogar dann zu trennen wenn diese vollständig überlappen und das gesamte Sehfeld umfassen, d.h. es weist Komponentenselektivität von Großfeldbewegungen auf. Ob sie eine einzele Großfeldbewegungskomponente oder den Mittelwert von Zweien als Referenz für Geradeausflug nutzt, hängt von Kontrast und Dichte der horizontalen Musterelemente ab, was eine Beteiligung einer Objekt-Hintergrund-Rivalität impliziert. Diese Rivalität und diejenige zwischen den beiden Großfeldbewegungskomponenten lösen eine Multistabilität im Orientierungsverhalten der Fliege aus, deren zeitliche Dynamik teilweise der der menschlichen multistabilen Wahrnehmung entspricht und die die Beteiligung von Aufmerksamkeitsprozessen wahrscheinlich macht.…
Author: | Franziska Helene Toepfer |
---|---|
URN: | urn:nbn:de:bvb:20-opus-153346 |
Document Type: | Doctoral Thesis |
Granting Institution: | Universität Würzburg, Fakultät für Biologie |
Faculties: | Fakultät für Biologie / Rudolf-Virchow-Zentrum |
Referee: | Prof. Dr. Martin Heisenberg |
Date of final exam: | 2017/09/06 |
Language: | English |
Year of Completion: | 2018 |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie |
GND Keyword: | Drosophila |
Tag: | Component selectivity; Invertebrate vision; Transparent motion |
Release Date: | 2018/09/07 |
Licence (German): | CC BY-NC-ND: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell, Keine Bearbeitungen 4.0 International |