Prototype of a bistable polariton field-effect transistor switch
Please always quote using this URN: urn:nbn:de:bvb:20-opus-158323
- Microcavity exciton polaritons are promising candidates to build a new generation of highly nonlinear and integrated optoelectronic devices. Such devices range from novel coherent light emitters to reconfigurable potential landscapes for electro-optical polariton-lattice based quantum simulators as well as building blocks of optical logic architectures. Especially for the latter, the strongly interacting nature of the light-matter hybrid particles has been used to facilitate fast and efficient switching of light by light, something which isMicrocavity exciton polaritons are promising candidates to build a new generation of highly nonlinear and integrated optoelectronic devices. Such devices range from novel coherent light emitters to reconfigurable potential landscapes for electro-optical polariton-lattice based quantum simulators as well as building blocks of optical logic architectures. Especially for the latter, the strongly interacting nature of the light-matter hybrid particles has been used to facilitate fast and efficient switching of light by light, something which is very hard to achieve with weakly interacting photons. We demonstrate here that polariton transistor switches can be fully integrated in electro-optical schemes by implementing a one-dimensional polariton channel which is operated by an electrical gate rather than by a control laser beam. The operation of the device, which is the polariton equivalent to a field-effect transistor, relies on combining electro-optical potential landscape engineering with local exciton ionization to control the scattering dynamics underneath the gate. We furthermore demonstrate that our device has a region of negative differential resistance and features a completely new way to create bistable behavior.…
Author: | H. Suchomel, S. Brodbeck, T. C. H. Liew, M. Amthor, M. Klaas, S. Klembt, M. Kamp, S. Höfling, C. Schneider |
---|---|
URN: | urn:nbn:de:bvb:20-opus-158323 |
Document Type: | Journal article |
Faculties: | Fakultät für Physik und Astronomie / Physikalisches Institut |
Language: | English |
Parent Title (English): | Scientific Reports |
Year of Completion: | 2017 |
Volume: | 7 |
Issue: | 5114 |
Source: | Scientific Reports 7:5114 (2017). DOI: 10.1038/s41598-017-05277-1 |
DOI: | https://doi.org/10.1038/s41598-017-05277-1 |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 53 Physik / 535 Licht, Infrarot- und Ultraviolettphänomene |
Tag: | materials for optics; nanoscience and technology; optics and photonics; semiconductors |
Release Date: | 2018/03/22 |
Collections: | Open-Access-Publikationsfonds / Förderzeitraum 2017 |
Licence (German): | CC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International |