On Numerical Methods for Astrophysical Applications

Über numerische Methoden für astrophysikalische Anwendungen

Please always quote using this URN: urn:nbn:de:bvb:20-opus-162669
  • This work is concerned with the numerical approximation of solutions to models that are used to describe atmospheric or oceanographic flows. In particular, this work concen- trates on the approximation of the Shallow Water equations with bottom topography and the compressible Euler equations with a gravitational potential. Numerous methods have been developed to approximate solutions of these models. Of specific interest here are the approximations of near equilibrium solutions and, in the case of the Euler equations, the low Mach number flowThis work is concerned with the numerical approximation of solutions to models that are used to describe atmospheric or oceanographic flows. In particular, this work concen- trates on the approximation of the Shallow Water equations with bottom topography and the compressible Euler equations with a gravitational potential. Numerous methods have been developed to approximate solutions of these models. Of specific interest here are the approximations of near equilibrium solutions and, in the case of the Euler equations, the low Mach number flow regime. It is inherent in most of the numerical methods that the quality of the approximation increases with the number of degrees of freedom that are used. Therefore, these schemes are often run in parallel on big computers to achieve the best pos- sible approximation. However, even on those big machines, the desired accuracy can not be achieved by the given maximal number of degrees of freedom that these machines allow. The main focus in this work therefore lies in the development of numerical schemes that give better resolution of the resulting dynamics on the same number of degrees of freedom, compared to classical schemes. This work is the result of a cooperation of Prof. Klingenberg of the Institute of Mathe- matics in Wu¨rzburg and Prof. R¨opke of the Astrophysical Institute in Wu¨rzburg. The aim of this collaboration is the development of methods to compute stellar atmospheres. Two main challenges are tackled in this work. First, the accurate treatment of source terms in the numerical scheme. This leads to the so called well-balanced schemes. They allow for an accurate approximation of near equilibrium dynamics. The second challenge is the approx- imation of flows in the low Mach number regime. It is known that the compressible Euler equations tend towards the incompressible Euler equations when the Mach number tends to zero. Classical schemes often show excessive diffusion in that flow regime. The here devel- oped scheme falls into the category of an asymptotic preserving scheme, i.e. the numerical scheme reflects the behavior that is computed on the continuous equations. Moreover, it is shown that the diffusion of the numerical scheme is independent of the Mach number. In chapter 3, an HLL-type approximate Riemann solver is adapted for simulations of the Shallow Water equations with bottom topography to develop a well-balanced scheme. In the literature, most schemes only tackle the equilibria when the fluid is at rest, the so called Lake at rest solutions. Here a scheme is developed to accurately capture all the equilibria of the Shallow Water equations. Moreover, in contrast to other works, a second order extension is proposed, that does not rely on an iterative scheme inside the reconstruction procedure, leading to a more efficient scheme. In chapter 4, a Suliciu relaxation scheme is adapted for the resolution of hydrostatic equilibria of the Euler equations with a gravitational potential. The hydrostatic relations are underdetermined and therefore the solutions to that equations are not unique. However, the scheme is shown to be well-balanced for a wide class of hydrostatic equilibria. For specific classes, some quadrature rules are computed to ensure the exact well-balanced property. Moreover, the scheme is shown to be robust, i.e. it preserves the positivity of mass and energy, and stable with respect to the entropy. Numerical results are presented in order to investigate the impact of the different quadrature rules on the well-balanced property. In chapter 5, a Suliciu relaxation scheme is adapted for the simulations of low Mach number flows. The scheme is shown to be asymptotic preserving and not suffering from excessive diffusion in the low Mach number regime. Moreover, it is shown to be robust under certain parameter combinations and to be stable from an Chapman-Enskog analysis. Numerical results are presented in order to show the advantages of the new approach. In chapter 6, the schemes developed in the chapters 4 and 5 are combined in order to investigate the performance of the numerical scheme in the low Mach number regime in a gravitational stratified atmosphere. The scheme is shown the be well-balanced, robust and stable with respect to a Chapman-Enskog analysis. Numerical tests are presented to show the advantage of the newly proposed method over the classical scheme. In chapter 7, some remarks on an alternative way to tackle multidimensional simulations are presented. However no numerical simulations are performed and it is shown why further research on the suggested approach is necessary.show moreshow less
  • Diese Arbeit befasst sich mit der Approximation der Lösungen von Modellen zur Beschreibung des Strömungsverhaltens in Atmosphären. Im Speziellen umfassen die hier behandelten Modelle die kompressiblen Euler Gleichungen der Gasdynamik mit einem Quellterm bezüglich der Gravitation und die Flachwassergleichungen mit einem nicht konstanten Bodenprofil. Verschiedene Methoden wurden bereits entwickelt um die Lösungen dieser Gleichungen zu approximieren. Im Speziellen geht diese Arbeit auf die Approximation von Lösungen nahe des GleichgewichtsDiese Arbeit befasst sich mit der Approximation der Lösungen von Modellen zur Beschreibung des Strömungsverhaltens in Atmosphären. Im Speziellen umfassen die hier behandelten Modelle die kompressiblen Euler Gleichungen der Gasdynamik mit einem Quellterm bezüglich der Gravitation und die Flachwassergleichungen mit einem nicht konstanten Bodenprofil. Verschiedene Methoden wurden bereits entwickelt um die Lösungen dieser Gleichungen zu approximieren. Im Speziellen geht diese Arbeit auf die Approximation von Lösungen nahe des Gleichgewichts und, im Falle der Euler Gleichungen, bei kleinen Mach Zahlen ein. Die meisten numerischen Methoden haben die Eigenschaft, dass die Qualität der Approximation sich mit der Anzahl der Freiheitsgrade verbessert. In der Praxis werden deswegen diese numerischen Methoden auf großen Computern implementiert um eine möglichst hohe Approximationsgüte zu erreichen. Jedoch sind auch manchmal diese großen Maschinen nicht ausreichend, um die gewünschte Qualität zu erreichen. Das Hauptaugenmerk dieser Arbeit ist darauf gerichtet, die Qualität der Approximation bei gleicher Anzahl von Freiheitsgrade zu verbessern. Diese Arbeit ist im Zusammenhang einer Kollaboration zwischen Prof. Klingenberg des Mathemaitschen Instituts in Würzburg und Prof. Röpke des Astrophysikalischen Instituts in Würzburg entstanden. Das Ziel dieser Kollaboration ist es, Methoden zur Berechnung von stellarer Atmosphären zu entwickeln. In dieser Arbeit werden vor allem zwei Problemstellungen behandelt. Die erste Problemstellung bezieht sich auf die akkurate Approximation des Quellterms, was zu den so genannten well-balanced Schemata führt. Diese erlauben genaue Approximationen von Lösungen nahe des Gleichgewichts. Die zweite Problemstellung bezieht sich auf die Approximation von Strömungen bei kleinen Mach Zahlen. Es ist bekannt, dass Lösungen der kompressiblen Euler Gleichungen zu Lösungen der inkompressiblen Euler Gleichungen konvergieren, wenn die Mach Zahl gegen null geht. Klassische numerische Schemata zeigen ein stark diffusives Verhalten bei kleinen Mach Zahlen. Das hier entwickelte Schema fällt in die Kategorie der asymptotic preserving Schematas, d.h. das numerische Schema ist auf einem diskrete Level kompatibel mit dem auf dem Kontinuum gezeigten verhalten. Zusätzlich wird gezeigt, dass die Diffusion des hier entwickelten Schemas unabhängig von der Mach Zahl ist. In Kapitel 3 wird ein HLL approximativer Riemann Löser für die Approximation der Lösungen der Flachwassergleichungen mit einem nicht konstanten Bodenprofil angewendet und ein well-balanced Schema entwickelt. Die meisten well-balanced Schemata für die Flachwassergleichungen behandeln nur den Fall eines Fluids im Ruhezustand, die so genannten Lake at Rest Lösungen. Hier wird ein Schema entwickelt, welches sich mit allen Gleichgewichten befasst. Zudem wird eine zweiter Ordnung Methode entwickelt, welche im Gegensatz zu anderen in der Literatur nicht auf einem iterativen Verfahren basiert. Numerische Experimente werden durchgeführt um die Vorteile des neuen Verfahrens zu zeigen. In Kapitel 4 wird ein Suliciu Relaxations Löser angepasst um die hydrostatischen Gleichgewichte der Euler Gleichungen mit einem Gravitationspotential aufzulösen. Die Gleichungen der hydrostatischen Gleichgewichte sind unterbestimmt und lassen deshalb keine Eindeutigen Lösungen zu. Es wird jedoch gezeigt, dass das neue Schema für eine große Klasse dieser Lösungen die well-balanced Eigenschaft besitzt. Für bestimmte Klassen werden Quadraturformeln zur Approximation des Quellterms entwickelt. Es wird auch gezeigt, dass das Schema robust, d.h. es erhält die Positivität der Masse und Energie, und stabil bezüglich der Entropieungleichung ist. Die numerischen Experimente konzentrieren sich vor allem auf den Einfluss der Quadraturformeln auf die well-balanced Eigenschaften. In Kapitel 5 wird ein Suliciu Relaxations Schema angepasst für Simulationen im Bereich kleiner Mach Zahlen. Es wird gezeigt, dass das neue Schema asymptotic preserving und die Diffusion kontrolliert ist. Zudem wird gezeigt, dass das Schema für bestimmte Parameter robust ist. Eine Stabilität wird aus einer Chapman-Enskog Analyse abgeleitet. Resultate numerische Experimente werden gezeigt um die Vorteile des neuen Verfahrens zu zeigen. In Kapitel 6 werden die Schemata aus den Kapiteln 4 und 5 kombiniert um das Verhalten des numerischen Schemas bei Flüssen mit kleiner Mach Zahl in durch die Gravitation geschichteten Atmosphären zu untersuchen. Es wird gezeigt, dass das Schema well-balanced ist. Die Robustheit und die Stabilität werden analog zu Kapitel 5 behandelt. Auch hier werden numerische Tests durchgeführt. Es zeigt sich, dass das neu entwickelte Schema in der Lage ist, die Dynamiken besser Aufzulösen als vor der Anpassung. Das Kapitel 7 beschäftigt sich mit der Entwicklung eines multidimensionalen Schemas basierend auf der Suliciu Relaxation. Jedoch ist die Arbeit an diesem Ansatz noch nicht beendet und numerische Resultate können nicht präsentiert werden. Es wird aufgezeigt, wo sich die Schwächen dieses Ansatzes befinden und weiterer Entwicklungsbedarf besteht.show moreshow less

Download full text files

Export metadata

Metadaten
Author: Markus Zenk
URN:urn:nbn:de:bvb:20-opus-162669
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Graduate Schools
Faculties:Fakultät für Mathematik und Informatik / Institut für Mathematik
Graduate Schools / Graduate School of Science and Technology
Referee:Prof. Dr. Christian Klingenberg, Prof. Dr. Friedrich Röpke, Prof. Dr. Yulong Xing
Date of final exam:2017/11/24
Language:English
Year of Completion:2018
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 52 Astronomie / 520 Astronomie und zugeordnete Wissenschaften
GND Keyword:Strömung; Atmosphäre; Mathematisches Modell
Tag:PDE
Asymptotic Preserving; Hyperbolic Partial Differential Equations; Numerical Methods; Well-Balanced
CCS-Classification:G. Mathematics of Computing
Release Date:2018/06/08
Licence (German):License LogoCC BY-SA: Creative-Commons-Lizenz: Namensnennung, Weitergabe unter gleichen Bedingungen 4.0 International