Electrometer offset current due to scattered radiation

Please always quote using this URN: urn:nbn:de:bvb:20-opus-176137
  • Relative dose measurements with small ionization chambers in combination with an electrometer placed in the treatment room (“internal electrometer”) show a large dependence on the polarity used. While this was observed previously for percent depth dose curves (PDDs), the effect has not been understood or preventable. To investigate the polarity dependence of internal electrometers used in conjunction with a small‐volume ionization chamber, we placed an internal electrometer at a distance of 1 m from the isocenter and exposed it to differentRelative dose measurements with small ionization chambers in combination with an electrometer placed in the treatment room (“internal electrometer”) show a large dependence on the polarity used. While this was observed previously for percent depth dose curves (PDDs), the effect has not been understood or preventable. To investigate the polarity dependence of internal electrometers used in conjunction with a small‐volume ionization chamber, we placed an internal electrometer at a distance of 1 m from the isocenter and exposed it to different amounts of scattered radiation by varying the field size. We identified irradiation of the electrometer to cause a current of approximately −1 pA, regardless of the sign of the biasing voltage. For low‐sensitivity detectors, such a current noticeably distorts relative dose measurements. To demonstrate how the current systematically changes PDDs, we collected measurements with nine ionization chambers of different volumes. As the chamber volume decreased, signal ratios at 20 and 10 cm depth (M20/M10) became smaller for positive bias voltage and larger for negative bias voltage. At the size of the iba CC04 (40 mm\(^{3}\)) the difference of M20/M10 was around 1% and for the smallest studied chamber, the iba CC003 chamber (3 mm\(^{3}\)), around 7% for a 10 × 10 cm² field. When the electrometer was moved further from the source or shielded, the additional current decreased. Consequently, PDDs at both polarities were brought into alignment at depth even for the 3 mm\(^{3}\) ionization chamber. The apparent polarity effect on PDDs and lateral beam profiles was reduced considerably by shielding the electrometer. Due to normalization the effect on output values was low. When measurements with a low‐sensitivity probe are carried out in conjunction with an internal electrometer, we recommend careful monitoring of the particular setup by testing both polarities, and if deemed necessary, we suggest shielding the electrometer.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Sonja Wegener, Otto A. Sauer
URN:urn:nbn:de:bvb:20-opus-176137
Document Type:Journal article
Faculties:Medizinische Fakultät / Klinik und Poliklinik für Strahlentherapie
Language:English
Parent Title (English):Journal of Applied Clinical Medical Physics
Year of Completion:2018
Volume:19
Issue:6
Pagenumber:274-281
Source:Journal of Applied Clinical Medical Physics 2018; 19(6); 274-281. DOI: 10.1002/acm2.12458
DOI:https://doi.org/10.1002/acm2.12458
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Tag:electrometer; micro-ionization chambers; polarity; relative dosimetry; scatter radiation
Release Date:2019/02/22
Collections:Open-Access-Publikationsfonds / Förderzeitraum 2018
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International