Efficient Electrochemical Water Oxidation by a Trinuclear Ru(bda) Macrocycle Immobilized on Multi‐Walled Carbon Nanotube Electrodes
Please always quote using this URN: urn:nbn:de:bvb:20-opus-218381
- Catalytic water splitting is a viable process for the generation of renewable fuels. Here it is reported for the first time that a trinuclear supramolecular Ru(bda) (bda: 2,2′‐bipyridine‐6,6′‐dicarboxylate) catalyst, anchored on multi‐walled carbon nanotubes and subsequently immobilized on glassy carbon electrodes, shows outstanding performance in heterogeneous water oxidation. Activation of the catalyst on anodes by repetitive cyclic voltammetry (CV) scans results in a catalytic current density of 186 mA cm\(^{−2}\) at a potential of 1.45 VCatalytic water splitting is a viable process for the generation of renewable fuels. Here it is reported for the first time that a trinuclear supramolecular Ru(bda) (bda: 2,2′‐bipyridine‐6,6′‐dicarboxylate) catalyst, anchored on multi‐walled carbon nanotubes and subsequently immobilized on glassy carbon electrodes, shows outstanding performance in heterogeneous water oxidation. Activation of the catalyst on anodes by repetitive cyclic voltammetry (CV) scans results in a catalytic current density of 186 mA cm\(^{−2}\) at a potential of 1.45 V versus NHE. The activated catalyst performs water oxidation at an onset overpotential of 330 mV. The remarkably high stability of the hybrid anode is demonstrated by X‐ray absorption spectroscopy and electrochemically, revealing the absence of any degradation after 1.8 million turnovers. Foot of the wave analysis of CV data of activated electrodes with different concentrations of catalyst indicates a monomolecular water nucleophilic attack mechanism with an apparent rate constant of TOFmax (turnover frequency) of 3200 s\(^{−1}\).…
Author: | Dorothee Schindler, Marcos Gil‐Sepulcre, Joachim O. Lindner, Vladimir Stepanenko, Dooshaye Moonshiram, Antoni Llobet, Frank WürthnerORCiD |
---|---|
URN: | urn:nbn:de:bvb:20-opus-218381 |
Document Type: | Journal article |
Faculties: | Fakultät für Chemie und Pharmazie / Institut für Organische Chemie |
Language: | English |
Parent Title (English): | Advanced Energy Materials |
Year of Completion: | 2020 |
Volume: | 10 |
Issue: | 43 |
Article Number: | 2002329 |
Source: | Advanced Energy Materials 2020, 10, 2002329. https://doi.org/10.1002/aenm.202002329 |
DOI: | https://doi.org/10.1002/aenm.202002329 |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 54 Chemie / 547 Organische Chemie |
Tag: | electrocatalysis; heterogeneous catalysis; renewable fuels; ruthenium bda complexes; water splitting |
Release Date: | 2021/03/09 |
Date of first Publication: | 2020/11/17 |
EU-Project number / Contract (GA) number: | 787937 |
Licence (German): | ![]() |