Cysteine restriction in murine L929 fibroblasts as an alternative strategy to methionine restriction in cancer therapy

Please always quote using this URN: urn:nbn:de:bvb:20-opus-265486
  • Methionine restriction (MetR) is an efficient method of amino acid restriction (AR) in cells and organisms that induces low energy metabolism (LEM) similar to caloric restriction (CR). The implementation of MetR as a therapy for cancer or other diseases is not simple since the elimination of a single amino acid in the diet is difficult. However, the in vivo turnover rate of cysteine is usually higher than the rate of intake through food. For this reason, every cell can enzymatically synthesize cysteine from methionine, which enables the use ofMethionine restriction (MetR) is an efficient method of amino acid restriction (AR) in cells and organisms that induces low energy metabolism (LEM) similar to caloric restriction (CR). The implementation of MetR as a therapy for cancer or other diseases is not simple since the elimination of a single amino acid in the diet is difficult. However, the in vivo turnover rate of cysteine is usually higher than the rate of intake through food. For this reason, every cell can enzymatically synthesize cysteine from methionine, which enables the use of specific enzymatic inhibitors. In this work, we analysed the potential of cysteine restriction (CysR) in the murine cell line L929. This study determined metabolic fingerprints using mass spectrometry (LC/MS). The profiles were compared with profiles created in an earlier work under MetR. The study was supplemented by proliferation studies using D-amino acid analogues and inhibitors of intracellular cysteine synthesis. CysR showed a proliferation inhibition potential comparable to that of MetR. However, the metabolic footprints differed significantly and showed that CysR does not induce classic LEM at the metabolic level. Nevertheless, CysR offers great potential as an alternative for decisive interventions in general and tumour metabolism at the metabolic level.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Werner SchmitzORCiD, Elena Ries, Corinna Koderer, Maximilian Friedrich Völter, Anna Chiara Wünsch, Mohamed El-Mesery, Kyra Frackmann, Alexander Christian Kübler, Christian Linz, Axel SeherORCiD
URN:urn:nbn:de:bvb:20-opus-265486
Document Type:Journal article
Faculties:Medizinische Fakultät / Theodor-Boveri-Institut für Biowissenschaften
Medizinische Fakultät / Klinik und Poliklinik für Mund-, Kiefer- und Plastische Gesichtschirurgie
Language:English
Parent Title (English):International Journal of Molecular Sciences
ISSN:1422-0067
Year of Completion:2021
Volume:22
Issue:21
Article Number:11630
Source:International Journal of Molecular Sciences (2021) 22:21, 11630. https://doi.org/10.3390/ijms222111630
DOI:https://doi.org/10.3390/ijms222111630
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Tag:LC/MS; amino acid analogues; caloric restriction; cancer therapy; cysteine restriction; cysteine synthase inhibitor; homocysteine; mass spectrometry; methionine restriction
Release Date:2022/04/29
Open-Access-Publikationsfonds / Förderzeitraum 2021
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International