Role of ABA-induced Ca\(^{2+}\) signals, and the Ca\(^{2+}\)-controlled protein kinase CIPK23, in regulation of stomatal movements

Rolle von ABA-abhängigen Ca\(^{2+}\) Signalen, und der Ca\(^{2+}\)-gesteuerten Proteinkinase CIPK23, bei der Regulation der Spaltöffnungsbewegungen

Please always quote using this URN: urn:nbn:de:bvb:20-opus-204737
  • Stomata are pores in the leaf surface, formed by pairs of guard cells. The guard cells modulate the aperture of stomata, to balance uptake of CO2 and loss of water vapor to the atmosphere. During drought, the phytohormone abscisic acid (ABA) provokes stomatal closure, via a signaling chain with both Ca2+-dependent and Ca2+-independent branches. Both branches are likely to activate SLAC1-type (Slow Anion Channel Associated 1) anion channels that are essential for initiating the closure of stomata. However, the importance of the Ca2+-dependentStomata are pores in the leaf surface, formed by pairs of guard cells. The guard cells modulate the aperture of stomata, to balance uptake of CO2 and loss of water vapor to the atmosphere. During drought, the phytohormone abscisic acid (ABA) provokes stomatal closure, via a signaling chain with both Ca2+-dependent and Ca2+-independent branches. Both branches are likely to activate SLAC1-type (Slow Anion Channel Associated 1) anion channels that are essential for initiating the closure of stomata. However, the importance of the Ca2+-dependent signaling branch is still debated, as the core ABA signaling pathway only possesses Ca2+-independent components. Therefore, the aim of this thesis was to address the role of the Ca2+-dependent branch in the ABA signaling pathway of guard cells. In the first part of the thesis, the relation between ABA-induced Ca2+ signals and stomatal closure was studied, with guard cells that express the genetically encoded Ca2+-indicator R-GECO1-mTurquoise. Ejection of ABA into the guard cell wall rapidly induced stomatal closure, however, only in ¾ of the guard cells ABA evoked a cytosolic Ca2+ signal. A small subset of stomata (¼ of the experiments) closed without Ca2+ signals, showing that the Ca2+ signals are not essential for ABA-induced stomatal closure. However, stomata in which ABA evoked Ca2+ signals closed faster as those in which no Ca2+ signals were detected. Apparently, ABA-induced Ca2+ signals enhance the velocity of stomatal closure. In addition to ABA, hyperpolarizing voltage pulses could also trigger Ca2+ signals in wild type guard cells, which in turn activated S-type anion channels. However, these voltage pulses failed to elicit S-type anion currents in the slac1/slah3 guard cells, suggesting that SLAC1 and SLAH3 contribute to Ca2+-activated conductance. Taken together, our data indicate that ABA-induced Ca2+ signals enhance the activity of S-type anion channels, which accelerates stomatal closure. The second part of the thesis deals with the signaling pathway downstream of the Ca2+ signals. Two types of Ca2+-dependent protein kinase modules (CPKs and CBL/CIPKs) have been implicated in guard cells. We focused on the protein kinase CIPK23 (CBL-Interacting Protein Kinase 23), which is activated by the Ca2+-dependent protein CBL1 or 9 (Calcineurin B-Like protein 1 or 9) via interacting with the NAF domain of CIPK23. The CBL1/9-CIPK23 complex has been shown to affect stomatal movements, but the underlying molecular mechanisms remain largely unknown. We addressed this topic by using an estrogen-induced expression system, which specifically enhances the expression of wild type CIPK23, a phosphomimic CIPK23T190D and a kinase dead CIPK23K60N in guard cells. Our data show that guard cells expressing CIPK23T190D promoted stomatal opening, while CIPK23K60N enhanced ABA-induced stomatal closure, suggesting that CIPK23 is a negative regulator of stomatal closure. Electrophysiological measurements revealed that the inward K+ channel currents were similar in guard cells that expressed CIPK23, CIPK23T190D or CIPK23K60N, indicating that CIPK23-mediated inward K+ channel AKT1 does not contribute to stomatal movements. Expression of CIPK23K60N, or loss of CIPK23 in guard cells enhanced S-type anion activity, while the active CIPK23T190D inhibited the activity of these anion channels. These results are in line with the detected changes in stomatal movements and thus indicate that CIPK23 regulates stomatal movements by inhibiting S-type anion channels. CIPK23 thus serves as a brake to control anion channel activity. Overall, our findings demonstrate that CIPK23-mediated stomatal movements do not depend on CIPK23-AKT1 module, instead, it is achieved by regulating S-type anion channels SLAC1 and SLAH3. In sum, the data presented in this thesis give new insights into the Ca2+-dependent branch of ABA signaling, which may help to put forward new strategies to breed plants with enhanced drought stress tolerance, and in turn boost agricultural productivity in the future.show moreshow less
  • Stomata sind Poren in der Blattoberfläche, die von einem Paar von Schließzellen gebildet werden. Die Schließzellen kontrollieren den Öffnungsweite der stomatären Pore, um die Aufnahme von CO2 und den Verlust von Wasserdampf in die Atmosphäre auszubalancieren. Während Trockenperioden bewirkt das Phytohormon Abscisinsäure (ABA) einen Stomaschluss über eine Signalkaskade, welche über Ca2+-abhängige und Ca2+-unabhängige Pfade verfügt. Beide Pfade aktivieren wahrscheinlich Anionenkanäle aus der SLAC1 Familie (Slow Anion Channel Associated 1), welcheStomata sind Poren in der Blattoberfläche, die von einem Paar von Schließzellen gebildet werden. Die Schließzellen kontrollieren den Öffnungsweite der stomatären Pore, um die Aufnahme von CO2 und den Verlust von Wasserdampf in die Atmosphäre auszubalancieren. Während Trockenperioden bewirkt das Phytohormon Abscisinsäure (ABA) einen Stomaschluss über eine Signalkaskade, welche über Ca2+-abhängige und Ca2+-unabhängige Pfade verfügt. Beide Pfade aktivieren wahrscheinlich Anionenkanäle aus der SLAC1 Familie (Slow Anion Channel Associated 1), welche essentiell sind um den Stomaschluss einzuleiten. Allerdings wird über die Wichtigkeit des Ca2+-abhängigen Pfades noch immer diskutiert, da der ABA-Hauptsignalweg ausschließlich Ca2+-unabhängige Komponenten beinhaltet. Aus diesem Grund war das Ziel dieser Thesis, die Rolle des Ca2+-abhängigen Pfades im ABA-Signalweg aufzulösen. Im ersten Teil der Thesis wurde mit Schließzellen, die den genetisch kodierten Ca2+-Sensor R-GECO1-mTurquoise exprimierten, der Zusammenhang zwischen ABA-induzierten Ca2+ Signalen und dem Stomaschluss untersucht. Die Injektion von ABA in die Zellwand von Schließzellen bewirkte einen schnellen Stomaschluss, jedoch wurde nur bei drei Vierteln der Zellen auch ein zytosolisches Ca2+ Signal erzeugt. Ein kleiner Teil der Stomata (in einem Viertel der Experimente) schloss sich ohne Ca2+ Signal, was zeigt, dass die Ca2+ Signale nicht essentiell für den ABA-induzierten Stomaschluss sind. Es schlossen sich jedoch Stomata schneller, in deren Schließzellen ABA-induzierte Ca2+ Signale detektiert wurden. ABA-induzierte Ca2+-Signale verbesserten also offenbar die Geschwindigkeit des Stomaschlusses. Neben ABA konnten Ca2+ Signale in wildtypischen Schließzellen auch durch hyperpolarisierende Spannungspulse erzeugt werden, welche daraufhin S-Typ Anionenkanäle aktivierten. Diese Spannungspulse konnten jedoch in slac1/slah3 Schließzellen keine S-typischen Anionenströme hervorrufen, was darauf hindeutet, dass SLAC1 und SLAH3 zur Ca2+-aktivierten Leitfähigkeit beitragen. Zusammengefasst deuten unsere Daten darauf hin, dass ABA-induzierte Ca2+ Signale die Aktivität von S-Typ Anionenkanälen verbessern und somit den Stomaschluss beschleunigen. Der zweite Teil der Thesis befasst sich mit dem Signalweg, der den Ca2+-Signalen nachgeschaltet ist. Es wurden zwei Typen Ca2+-abhängiger Proteinkinase-Module (CPKs und CBL/CIPKs) in Schließzellen nachgewiesen. Wir haben uns auf die Proteinkinase CIPK23 (CBL-Interacting Protein Kinase 23) konzentriert, welche von den Ca2+-abhängigen Proteinen CBL1 und CBL9 (Calcineurin B-Like Protein 1 oder 9) über Interaktion mit der NAF Domäne des CIPK23 aktiviert wird. Es konnte bereits gezeigt werden, dass der CBL1/CIPK23 Komplex die stomatäre Bewegung beinflusst, jedoch sind die zugrunde liegenden molekularen Mechanismen bisher weitgehend unbekannt geblieben. Wir haben dieses Thema mit einem Östrogen-induzierten Expressionssystem untersucht, welches spezifisch in Schließzellen die Expression von wildtypischem CIPK23 erhöhte. Hinzu kamen Experimente mit einer phosphomimetischen CIPK23T190D und einer CIPK23K60N mit disfunktionaler Kinasedomäne. Unsere Daten zeigen, dass CIPK23T190D exprimierende Schließzellen eine verbesserte Stomaöffnung aufwiesen, während CIPK23K60N den ABA-induzierten Stomaschluss förderte, was auf eine negativ regulierende Rolle von CIPK23 beim Stomaschluss hindeutet. Elektrophysiologische Messungen zeigten, dass die einwärtsgerichteten K+-Ströme in CIPK23-, CIPK23T190D- oder CIPK23K60N-exprimierenden Schließzellen vergleichbar waren, was darauf hindeutet, dass die Aktivierung von AKT1 durch CIPK23 nicht zur stomatären Bewegung beiträgt. Allerdings führte die Expression von CIPK23K60N, wie auch der Verlust von CIPK23, in Schließzellen zu einer erhöhten S-typischen Anionenkanalaktivität, während eine CIPK23T190D-Expression diese Anionenkanalaktivität inhibierte. Diese Ergebnisse stimmen mit den Beobachtungen zu den gezeigten Veränderungen der stomatären Bewegung überein und deuten daher auf eine regulierende Rolle von CIPK23 für die stomatäre Bewegung durch die Inhibierung von S-Typ Anionenkanälen hin. Insgesamt beweisen unsere Befunde, dass die CIPK23-vermittelte stomatäre Bewegung nicht durch eine Interaktion von CIP23 mit AKT1, sondern durch die Regulierung der S-Typ Anionenkanäle SLAC1 und SLAH3 vermittelt wird. Zusammengefasst ergeben die in dieser Thesis präsentierten Daten neue Einblicke in den Ca2+-abhängigen Pfad des ABA-Signalwegs. Dies könnte in Zukunft helfen neue Strategien zur Zucht von Pflanzen mit verbesserter Trockenstresstoleranz zu entwickeln und somit die agrarwirtschaftliche Produktivität zu erhöhen.show moreshow less

Download full text files

Export metadata

Metadaten
Author: Shouguang HuangORCiDGND
URN:urn:nbn:de:bvb:20-opus-204737
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Biologie
Faculties:Fakultät für Biologie / Julius-von-Sachs-Institut für Biowissenschaften
Referee:PD. Dr. M. Rob G. Roelfsema, PD. Dr. Frank Waller
Date of final exam:2020/03/05
Language:English
Year of Completion:2023
DOI:https://doi.org/10.25972/OPUS-20473
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Tag:ABA; AKT1; CIPK23; Ca2+ signal; K+ channels; OST1; SLAC1; Stomata; anion channels; drought stress; guard cells
Release Date:2023/03/07
Licence (German):License LogoDeutsches Urheberrecht