Performance Engineering of Serverless Applications and Platforms
Performanz Engineering von Serverless Anwendungen und Plattformen
Please always quote using this URN: urn:nbn:de:bvb:20-opus-303134
- Serverless computing is an emerging cloud computing paradigm that offers a highlevel application programming model with utilization-based billing. It enables the deployment of cloud applications without managing the underlying resources or worrying about other operational aspects. Function-as-a-Service (FaaS) platforms implement serverless computing by allowing developers to execute code on-demand in response to events with continuous scaling while having to pay only for the time used with sub-second metering. Cloud providers have furtherServerless computing is an emerging cloud computing paradigm that offers a highlevel application programming model with utilization-based billing. It enables the deployment of cloud applications without managing the underlying resources or worrying about other operational aspects. Function-as-a-Service (FaaS) platforms implement serverless computing by allowing developers to execute code on-demand in response to events with continuous scaling while having to pay only for the time used with sub-second metering. Cloud providers have further introduced many fully managed services for databases, messaging buses, and storage that also implement a serverless computing model. Applications composed of these fully managed services and FaaS functions are quickly gaining popularity in both industry and in academia. However, due to this rapid adoption, much information surrounding serverless computing is inconsistent and often outdated as the serverless paradigm evolves. This makes the performance engineering of serverless applications and platforms challenging, as there are many open questions, such as: What types of applications is serverless computing well suited for, and what are its limitations? How should serverless applications be designed, configured, and implemented? Which design decisions impact the performance properties of serverless platforms and how can they be optimized? These and many other open questions can be traced back to an inconsistent understanding of serverless applications and platforms, which could present a major roadblock in the adoption of serverless computing. In this thesis, we address the lack of performance knowledge surrounding serverless applications and platforms from multiple angles: we conduct empirical studies to further the understanding of serverless applications and platforms, we introduce automated optimization methods that simplify the operation of serverless applications, and we enable the analysis of design tradeoffs of serverless platforms by extending white-box performance modeling.…
- Serverless Computing ist ein neues Cloud-Computing-Paradigma, das ein High-Level-Anwendungsprogrammiermodell mit nutzungsbasierter Abrechnung bietet. Es ermöglicht die Bereitstellung von Cloud-Anwendungen, ohne dass die zugrunde liegenden Ressourcen verwaltet werden müssen oder man sich um andere betriebliche Aspekte kümmern muss. FaaS-Plattformen implementieren Serverless Computing, indem sie Entwicklern die Möglichkeit geben, Code nach Bedarf als Reaktion auf Ereignisse mit kontinuierlicher Skalierung auszuführen, während sie nur für dieServerless Computing ist ein neues Cloud-Computing-Paradigma, das ein High-Level-Anwendungsprogrammiermodell mit nutzungsbasierter Abrechnung bietet. Es ermöglicht die Bereitstellung von Cloud-Anwendungen, ohne dass die zugrunde liegenden Ressourcen verwaltet werden müssen oder man sich um andere betriebliche Aspekte kümmern muss. FaaS-Plattformen implementieren Serverless Computing, indem sie Entwicklern die Möglichkeit geben, Code nach Bedarf als Reaktion auf Ereignisse mit kontinuierlicher Skalierung auszuführen, während sie nur für die genutzte Zeit mit sekundengenauer Abrechnung zahlen müssen. Cloud-Anbieter haben darüber hinaus viele vollständig verwaltete Dienste für Datenbanken, Messaging-Busse und Orchestrierung eingeführt, die ebenfalls ein Serverless Computing-Modell implementieren. Anwendungen, die aus diesen vollständig verwalteten Diensten und FaaS-Funktionen bestehen, werden sowohl in der Industrie als auch in der Wissenschaft immer beliebter. Aufgrund dieser schnellen Verbreitung sind jedoch viele Informationen zum Serverless Computing inkonsistent und oft veraltet, da sich das Serverless Paradigma weiterentwickelt. Dies macht das Performanz-Engineering von Serverless Anwendungen und Plattformen zu einer Herausforderung, da es viele offene Fragen gibt, wie zum Beispiel: Für welche Arten von Anwendungen ist Serverless Computing gut geeignet und wo liegen seine Grenzen? Wie sollten Serverless Anwendungen konzipiert, konfiguriert und implementiert werden? Welche Designentscheidungen wirken sich auf die Performanzeigenschaften von Serverless Plattformen aus und wie können sie optimiert werden? Diese und viele andere offene Fragen lassen sich auf ein uneinheitliches Verständnis von Serverless Anwendungen und Plattformen zurückführen, was ein großes Hindernis für die Einführung von Serverless Computing darstellen könnte. In dieser Arbeit adressieren wir den Mangel an Performanzwissen zu Serverless Anwendungen und Plattformen aus mehreren Blickwinkeln: Wir führen empirische Studien durch, um das Verständnis von Serverless Anwendungen und Plattformen zu fördern, wir stellen automatisierte Optimierungsmethoden vor, die das benötigte Wissen für den Betrieb von Serverless Anwendungen reduzieren, und wir erweitern die White-Box-Performanzmodellierungerung für die Analyse von Designkompromissen von Serverless Plattformen.…
Author: | Simon EismannGND |
---|---|
URN: | urn:nbn:de:bvb:20-opus-303134 |
Document Type: | Doctoral Thesis |
Granting Institution: | Universität Würzburg, Fakultät für Mathematik und Informatik |
Faculties: | Fakultät für Mathematik und Informatik / Institut für Informatik |
Referee: | Prof. Dr. Samuel Kounev, Prof. Dr. Frank Puppe, Prof. Dr. Davide Taibi |
Date of final exam: | 2023/01/20 |
Language: | English |
Year of Completion: | 2023 |
DOI: | https://doi.org/10.25972/OPUS-30313 |
Dewey Decimal Classification: | 0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 000 Informatik, Informationswissenschaft, allgemeine Werke |
GND Keyword: | Leistungsbewertung; Cloud Computing |
Tag: | software performance |
Release Date: | 2023/03/06 |
Licence (German): | CC BY-SA: Creative-Commons-Lizenz: Namensnennung, Weitergabe unter gleichen Bedingungen 4.0 International |