Füllungs- und wechselwirkungsabhängiger Mott-Übergang: Quanten-Cluster-Rechnungen im Rahmen der Selbstenergiefunktional-Theorie

Filling- and interaction-driven Mott transition: Quantum cluster calculations within self-energy-functional theory

Please always quote using this URN: urn:nbn:de:bvb:20-opus-35266
  • Die Untersuchung stark korrelierter Elektronensysteme anhand des zweidimensionalen Hubbard-Modells bildet das zentrale Thema dieser Arbeit. Wir analysieren das Schicksal des Mott-Isolators bei Dotierung als auch bei Reduzierung der Wechselwirkungsstärke. Die numerische Auswertung erfolgt mit Hilfe von Quanten-Cluster-Approximationen, die eine thermodynamisch konsistente Beschreibung der Grundzustandseigenschaften garantieren. Der hier verwendete Rahmen der Selbstenergiefunktional-Theorie bietet eine große Flexibilität bei der Konstruktion vonDie Untersuchung stark korrelierter Elektronensysteme anhand des zweidimensionalen Hubbard-Modells bildet das zentrale Thema dieser Arbeit. Wir analysieren das Schicksal des Mott-Isolators bei Dotierung als auch bei Reduzierung der Wechselwirkungsstärke. Die numerische Auswertung erfolgt mit Hilfe von Quanten-Cluster-Approximationen, die eine thermodynamisch konsistente Beschreibung der Grundzustandseigenschaften garantieren. Der hier verwendete Rahmen der Selbstenergiefunktional-Theorie bietet eine große Flexibilität bei der Konstruktion von Cluster-Näherungen. Eine detaillierte Analyse gibt Aufschluss über die Qualität und das Konvergenzverhalten unterschiedlicher Cluster-Näherungen innerhalb der Selbstenergiefunktional-Theorie. Wir verwenden für diese Untersuchungen das eindimensionale Hubbard-Modell und vergleichen unsere Resultate mit der exakten Lösung. In zwei Dimensionen finden wir als Grundzustand des Teilchen-Loch-symmetrischen Modells bei Halbfüllung einen antiferromagnetischen Isolator unabhängig von der Wechselwirkungsstärke. Die Berücksichtigung kurzreichweitiger räumlicher Korrelationen durch unsere Cluster-Näherung führt, im Vergleich mit der dynamischen Mean-Field-Theorie, zu einer deutlichen Verbesserung des antiferromagnetischen Ordnungsparameters. Darüberhinaus beobachten wir in der paramagnetischen Phase einen Metall-Isolator-Übergang als Funktion der Wechselwirkungsstärke, der sich qualitativ vom reinen Mean-Field-Szenario unterscheidet. Ausgehend vom antiferromagnetischen Mott-Isolator zeigt sich ein füllungsgetriebener Metall-Isolator-Übergang in eine paramagnetische metallische Phase. Abhängig von der verwendeten Cluster-Approximation tritt dabei zunächst eine antiferromagnetische metallische Phase auf. Neben langreichweitiger antiferromagnetischer Ordnung haben wir in unseren Rechnungen auch Supraleitung berücksichtigt. Das Verhalten des supraleitenden Ordnungsparameters als Funktion der Dotierung ist dabei in guter Übereinstimmung sowohl mit anderen numerischen Verfahren als auch mit experimentellen Ergebnissen.show moreshow less
  • The central goal of this thesis is the examination of strongly correlated electron systems on the basis of the two-dimensional Hubbard model. We analyze how the properties of the Mott insulator change upon doping and with interaction strength. The numerical evaluation is done using quantum cluster approximations, which allow for a thermodynamically consistent description of the ground state properties. The framework of self-energy-functional theory offers great flexibility for the construction of cluster approximations. A detailed analysisThe central goal of this thesis is the examination of strongly correlated electron systems on the basis of the two-dimensional Hubbard model. We analyze how the properties of the Mott insulator change upon doping and with interaction strength. The numerical evaluation is done using quantum cluster approximations, which allow for a thermodynamically consistent description of the ground state properties. The framework of self-energy-functional theory offers great flexibility for the construction of cluster approximations. A detailed analysis sheds light on the quality and the convergence properties of different cluster approximations within the self-energy-functional theory. We use the one-dimensional Hubbard model for these examinations and compare our results with the exact solution. In two dimensions the ground state of the particle-hole symmetric model at half-filling is an antiferromagnetic insulator, independent of the interaction strength. The inclusion of short-range spatial correlations by our cluster approach leads to a considerable im\-prove\-ment of the antiferromagnetic order parameter as compared to dynamical mean-field theory. In the paramagnetic phase we furthermore observe a metal-insulator transition as a function of the interaction strength, which qualitatively differs from the pure mean-field scenario. Starting from the antiferromagnetic Mott insulator a filling-controlled metal-insulator transition in a paramagnetic metallic phase can be observed. Depending on the cluster approximation used an antiferromagnetic metallic phase may occur at first. In addition to long-range antiferromagnetic order, we also considered superconductivity in our calculations. The superconducting order parameter as a function of doping is in good agreement with other numerical methods, as well as with experimental results.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Matthias Balzer
URN:urn:nbn:de:bvb:20-opus-35266
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Physik und Astronomie
Faculties:Fakultät für Physik und Astronomie / Institut für Theoretische Physik und Astrophysik
Date of final exam:2009/04/06
Language:German
Year of Completion:2008
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
GND Keyword:Festkörpertheorie; Hubbard-Modell; Metall-Isolator-Phasenumwandlung; Mott-Übergang; Hochtemperatursupraleitung
Tag:Selbstenergiefunktional-Theorie
Self-energy-functional theory; Variational cluster approximation
PACS-Classification:70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES / 71.00.00 Electronic structure of bulk materials (see section 73 for electronic structure of surfaces, interfaces, low-dimensional structures, and nanomaterials; for electronic structure of superconductors, see 74.25.Jb) / 71.27.+a Strongly correlated electron systems; heavy fermions
70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES / 71.00.00 Electronic structure of bulk materials (see section 73 for electronic structure of surfaces, interfaces, low-dimensional structures, and nanomaterials; for electronic structure of superconductors, see 74.25.Jb) / 71.30.+h Metal-insulator transitions and other electronic transitions
Release Date:2009/04/16
Advisor:Prof. Dr. Michael Potthoff