Super-resolution microscopy of plasma membrane receptors

Hochauflösende Mikroskopie von Plasmamembran Rezeptoren

Please always quote using this URN: urn:nbn:de:bvb:20-opus-250048
  • Plasma membrane receptors are the most crucial and most commonly studied components of cells, since they not only ensure communication between the extracellular space and cells, but are also responsible for the regulation of cell cycle and cell division. The composition of the surface receptors, the so-called "Receptome", differs and is characteristic for certain cell types. Due to their significance, receptors have been important target structures for diagnostic and therapy in cancer medicine and often show aberrant expression patterns inPlasma membrane receptors are the most crucial and most commonly studied components of cells, since they not only ensure communication between the extracellular space and cells, but are also responsible for the regulation of cell cycle and cell division. The composition of the surface receptors, the so-called "Receptome", differs and is characteristic for certain cell types. Due to their significance, receptors have been important target structures for diagnostic and therapy in cancer medicine and often show aberrant expression patterns in various cancers compared to healthy cells. However, these aberrations can also be exploited and targeted by different medical approaches, as in the case of personalized immunotherapy. In addition, advances in modern fluorescence microscopy by so-called single molecule techniques allow for unprecedented sensitive visualization and quantification of molecules with an attainable spatial resolution of 10-20 nm, allowing for the detection of both stoichiometric and expression density differences. In this work, the single molecule sensitive method dSTORM was applied to quantify the receptor composition of various cell lines as well as in primary samples obtained from patients with hematologic malignancies. The focus of this work lies on artefact free quantification, stoichiometric analyses of oligomerization states and co localization analyses of membrane receptors. Basic requirements for the quantification of receptors are dyes with good photoswitching properties and labels that specifically mark the target structure without generating background through non-specific binding. To ensure this, antibodies with a predefined DOL (degree of labeling) were used, which are also standard in flow cytometry. First background reduction protocols were established on cell lines prior analyses in primary patient samples. Quantitative analyses showed clear expression differences between the cell lines and the patient cells, but also between individual patients. An important component of this work is the ability to detect the oligomerization states of receptors, which enables a more accurate quantification of membrane receptor densities compared to standard flow cytometry. It also provides information about the activation of a certain receptor, for example of FLT3, a tyrosine kinase, dimerizing upon activation. For this purpose, different well-known monomers and dimers were compared to distinguish the typical localization statistics of single bound antibodies from two or more antibodies that are in proximity. Further experiments as well as co localization analyses proved that antibodies can bind to closely adjacent epitopes despite their size. These analytical methods were subsequently applied for quantification and visualization of receptors in two clinically relevant examples. Firstly, various therapeutically relevant receptors such as CD38, BCMA and SLAMF7 for multiple myeloma, a malignant disease of plasma cells, were analyzed and quantified on patient cells. Furthermore, the influence of TP53 and KRAS mutations on receptor expression levels was investigated using the multiple myeloma cell lines OPM2 and AMO1, showing clear differences in certain receptor quantities. Secondly, FLT3 which is a therapeutic target receptor for acute myeloid leukemia, was quantified and stoichiometrically analyzed on both cell lines and patient cells. In addition, cells that have developed resistance against midostaurin were compared with cells that still respond to this type I tyrosine-kinase-inhibitor for their FLT3 receptor expression and oligomerization state.show moreshow less
  • Plasmamembranrezeptoren sind die wohl wichtigsten und meist untersuchten Komponenten einer Zelle, da sie nicht nur die Kommunikation zwischen dem extrazellulären Bereich und den Zellen gewährleisten, sondern auch für die Regulierung des Zellzyklus und der Zellteilung zuständig sind. Dabei unterscheidet sich die Zusammensetzung der Oberflächenrezeptoren, das sogenannte „Rezeptom“, und ist charakteristisch für bestimme Zelltypen. Aufgrund ihrer Bedeutsamkeit sind Rezeptoren wichtige Zielstrukturen für Diagnose und Therapie in der Krebsmedizin,Plasmamembranrezeptoren sind die wohl wichtigsten und meist untersuchten Komponenten einer Zelle, da sie nicht nur die Kommunikation zwischen dem extrazellulären Bereich und den Zellen gewährleisten, sondern auch für die Regulierung des Zellzyklus und der Zellteilung zuständig sind. Dabei unterscheidet sich die Zusammensetzung der Oberflächenrezeptoren, das sogenannte „Rezeptom“, und ist charakteristisch für bestimme Zelltypen. Aufgrund ihrer Bedeutsamkeit sind Rezeptoren wichtige Zielstrukturen für Diagnose und Therapie in der Krebsmedizin, welche häufig bei verschiedensten Krebserkrankungen im Vergleich zu gesunden Zellen aberrante Expressionsmuster aufweisen. Diese Abweichungen können sich allerdings auch zu Nutze gemacht werden und zum Ziel verschiedener medizinischer Behandlungsmethoden, wie es bei der personalisierten Immuntherapie der Fall ist, werden. Zusätzlich hat der Fortschritt in der modernen Fluoreszenzmikroskopie durch sogenannte Einzelmolekültechniken, es auch erlaubt, eine noch nie dagewesene empfindliche Visualisierung und Quantifizierung von Molekülen mit einer räumlichen Auflösung von 10-20 nm zu erreichen, wodurch sowohl stöchiometrische Unterschiede, als auch Unterschiede in der Expressionsdichte detektiert werden können. In dieser Arbeit wurde die einzelmolekülsensitive Methode dSTORM genutzt, um die Rezeptorkomposition von verschiedenen Zelllinien aber auch von primären Patientenzellen mit zugrundeliegenden hämatologischen Erkrankungen zu quantifizieren. Schwerpunkte dieser Arbeit sind dabei die artefaktfreie Quantifizierung, stöchiometrische Analysen von Oligomerisierungszuständen, sowie die Kolokalisationsanalyse von Membranrezeptoren. Grundvoraussetzung für die Quantifizierung von Rezeptoren sind dabei gut schaltbare Farbstoffe, sowie Label, welche die Zielstruktur spezifisch markieren ohne dabei Hintergrund durch unspezifische Bindung zu generieren. Um dies zu gewährleisten, kamen Antikörper mit einem vordefinierten DOL (degree of labeling; engl. für: Markierungsgrad) zum Einsatz, welche auch in der Durchflusszytometrie standardmäßig eingesetzt werden. Protokolle zur Hintergrundreduktion wurden dabei an Zelllinien etabliert, bevor Primärzellen von Krebspatienten analysiert wurden. Durch quantitative Analysen konnten dabei deutliche Expressionsunterschiede zwischen den Zelllinien und den Patientenzellen, aber auch zwischen den verschiedenen Patienten gezeigt werden. Ein wichtiger Bestandteil dieser Arbeit ist die Fähigkeit, den Oligomerisierungszustand von Rezeptoren zu erkennen, was eine genauere Quantifizierung der Membran-rezeptordichten im Vergleich zur Durchflusszytometrie ermöglicht. Allerdings können diese Oligomerisierungszustände auch Informationen über die Aktivierung eines Rezeptors beinhalten, wie zum Beispiel von FLT3, einer Tyrosinkinase, welche zur Aktivierung dimerisieren muss. Hierfür wurden verschiedene bekannte Monomere und Dimere verglichen, um die typische Lokalisationsstatistik von vereinzelten gebundenen Antikörpern mit der von zwei oder mehr Antikörpern, welche nah beieinanderliegen, zu vergleichen. Durch weitere Etablierungsexperimente sowie Kolokalisationsanalysen konnte außerdem bewiesen werden, dass Antikörper trotz ihrer Größe auch an nah benachbarte Epitope binden können. Diese Analyseverfahren wurden im weiteren Verlauf zur Quantifizierung und Visualisierung von Rezeptoren an zwei klinisch relevanten Beispielen angewendet. Zum einen wurden verschiedene therapeutisch relevante Rezeptoren wie z.B. CD38, BCMA und SLAMF7 für das Multiple Myelom, einer malignen Erkrankung von Plasmazellen, auf Patientenzellen analysiert und quantifiziert. Zusätzlich wurde der Einfluss von TP53 und KRAS Mutationen auf die Rezeptorexpressionen anhand der Multiplen Myelom Zelllinien OPM2 und AMO1 untersucht, bei denen eindeutige Unterschiede in der Rezeptorexpression detektiert wurden. Zum anderen wurde FLT3, welches ein therapeutischer Zielrezeptor für die akute myeloische Leukämie ist, sowohl auf Zelllinien als auch auf Patientenzellen quantifiziert und stöchiometrisch analysiert. Hierbei wurden auch Zellen welche eine Midostaurinresistenz entwickelt haben mit Zellen, welche auf diesen Typ I Tyrosinkinase Inhibitor ansprechen, auf ihre FLT3 Rezeptorexpression und ihren Oligomerisierungszustand verglichen.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Patrick Eiring
URN:urn:nbn:de:bvb:20-opus-250048
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Biologie
Faculties:Fakultät für Biologie / Theodor-Boveri-Institut für Biowissenschaften
Referee:Prof. Dr. Markus Sauer, Prof. Dr. Martin Kortüm
Date of final exam:2021/12/10
Language:English
Year of Completion:2021
DOI:https://doi.org/10.25972/OPUS-25004
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
GND Keyword:Fluoreszenzmikroskopie; Membranrezeptor
Tag:Hochaufgelöste Fluoreszenzmikroskopie
Membrane receptor; Super-resolution microscopy
Release Date:2021/12/06
Licence (German):License LogoCC BY-SA: Creative-Commons-Lizenz: Namensnennung, Weitergabe unter gleichen Bedingungen 4.0 International