TY - JOUR A1 - Baur, Johannes A1 - Otto, Christoph A1 - Steger, Ulrich A1 - Klein-Hessling, Stefan A1 - Muhammad, Khalid A1 - Pusch, Tobias A1 - Murti, Krisna A1 - Wismer, Rhoda A1 - Germer, Christoph-Thomas A1 - Klein, Ingo A1 - Müller, Nora A1 - Serfling, Edgar A1 - Avots, Andris T1 - The transcription factor NFaTc1 supports the rejection of heterotopic heart allografts T2 - Frontiers in Immunology N2 - The immune suppressants cyclosporin A (CsA) and tacrolimus (FK506) are used worldwide in transplantation medicine to suppress graft rejection. Both CsA and FK506 inhibit the phosphatase calcineurin (CN) whose activity controls the immune receptor-mediated activation of lymphocytes. Downstream targets of CN in lymphocytes are the nuclear factors of activated T cells (NFATs). We show here that the activity of NFATc1, the most prominent NFAT factor in activated lymphocytes supports the acute rejection of heterotopic heart allografts. While ablation of NFATc1 in T cells prevented graft rejection, ectopic expression of inducible NFATc1/αA isoform led to rejection of heart allografts in recipient mice. Acceptance of transplanted hearts in mice bearing NFATc1-deficient T cells was accompanied by a reduction in number and cytotoxicity of graft infiltrating cells. In CD8\(^+\) T cells, NFATc1 controls numerous intracellular signaling pathways that lead to the metabolic switch to aerobic glycolysis and the expression of numerous lymphokines, chemokines, and their receptors, including Cxcr3 that supports the rejection of allogeneic heart transplants. These findings favors NFATc1 as a molecular target for the development of new strategies to control the cytotoxicity of T cells upon organ transplantation. KW - NFATc1 KW - transplantation KW - heterologous KW - CD8+ T cells KW - ChIPseq KW - metabolism Y1 - 2018 UR - https://opus.bibliothek.uni-wuerzburg.de/opus4-wuerzburg/frontdoor/index/index/docId/22153 UR - https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-221530 VL - 9 ER -