TY - JOUR A1 - Wen, Lai A1 - Feil, Susanne A1 - Wolters, Markus A1 - Thunemann, Martin A1 - Regler, Frank A1 - Schmidt, Kjestine A1 - Friebe, Andreas A1 - Olbrich, Marcus A1 - Langer, Harald A1 - Gawaz, Meinrad A1 - de Wit, Cor A1 - Feil, Robert T1 - A shear-dependent NO-cGMP-cGKI cascade in platelets acts as an auto-regulatory brake of thrombosis T2 - Nature Communications N2 - Mechanisms that limit thrombosis are poorly defined. One of the few known endogenous platelet inhibitors is nitric oxide (NO). NO activates NO sensitive guanylyl cyclase (NO-GC) in platelets, resulting in an increase of cyclic guanosine monophosphate (cGMP). Here we show, using cGMP sensor mice to study spatiotemporal dynamics of platelet cGMP, that NO-induced cGMP production in pre-activated platelets is strongly shear-dependent. We delineate a new mode of platelet-inhibitory mechanotransduction via shear-activated NO-GC followed by cGMP synthesis, activation of cGMP-dependent protein kinase I (cGKI), and suppression of Ca2+ signaling. Correlative profiling of cGMP dynamics and thrombus formation in vivo indicates that high cGMP concentrations in shear-exposed platelets at the thrombus periphery limit thrombosis, primarily through facilitation of thrombus dissolution. We propose that an increase in shear stress during thrombus growth activates the NO-cGMP-cGKI pathway, which acts as an auto-regulatory brake to prevent vessel occlusion, while preserving wound closure under low shear. KW - calcium signalling KW - fluorescence imaging KW - platelets KW - thrombosis Y1 - 2018 UR - https://opus.bibliothek.uni-wuerzburg.de/opus4-wuerzburg/frontdoor/index/index/docId/23361 UR - https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-233616 VL - 9 ER -