TY - THES A1 - Schelter, Jürgen T1 - Elektronentransferprozesse in gemischtvalenten Systemen, Redoxkaskaden und Polymeren auf Basis von Triarylaminredoxzentren T1 - Electron transfer processes in mixed valence compounds, redox cascades and polymers based on triarylamine redox centres N2 - Im Rahmen dieser Arbeit wurden Elektronentransferprozesse in Systemen, die auf Triphenylaminredoxzentren basieren, mit Hilfe spektroskopischer und elektrochemischer sowie spektroelektrochemischer Methoden studiert. Im ersten Teil der vorliegenden Arbeit wurden Bistriarylaminsysteme analog zu N,N,N’,N’-Tetra(4-methoxyphenyl)-1,4-phenylendiamin (1) untersucht, deren Radikalkationen eine für gemischtvalente Systeme typische breite und insbesondere bei 1 stark asymmetrische IVCT-Absorptionsbande zeigen. Die Analyse dieser Banden nach Hush sowie einem modifizierten Modell, das der Vibronic coupling-Theorie angelehnt ist, deutet auf die Abnahme der elektronischen Kopplung mit zunehmender Vergrößerung des zentralen Phenylenspacers durch Naphthalin- (2) bzw. Anthracenspacer (3) und damit größerer sterischer Hinderung hin. Gleichzeitig nimmt aber mit der Vergrößerung des -Systems des Spacers auch die Reorganisationsenergie  ab. Insgesamt verhalten sich alle drei Verbindungen sehr ähnlich, was insbesondere das Verhältnis von Absorptionsmaximum der IVCT-Bande zum zweifachen Wert der elektronischen Kopplung betrifft. Legt man vor allem das modifizierte Vibronic coupling-Modell zugrunde, so liegt dieses Verhältnis bei 1+, 2+ und 3+ sehr nahe bei 1, so daß alle drei Systeme sehr nahe am Übergang von Robin-Day-Klasse II zu Klasse III liegen. Weiterhin wurden über einen 1,4-Diethinylphenyl-Spacer verbrückte Bistriarylaminsysteme untersucht, bei denen durch Variation der Spacereinheit (1,4-Diethinylphenyl (5), 1,4-Diethinylnaphthalin (6), 1,4-Diethinyl-2,5-dimethoxyphenyl (10)) die Energie eines Brückenzustandes im Vergleich zu Zuständen, bei denen das Radikal an einem Triarylaminzentrum lokalisiert ist, schrittweise abgesenkt wird. Die auftretenden Elektronentransferprozesse können mit Hilfe eines Dreiniveaumodells mit zwei voneinander unabhängigen Elektronentransferkoordinaten beschrieben werden. Es zeigt sich, daß bei elektronenarmen Spacern, wie z.B. bei 5+, der Elektronentransfer nach einem Superexchange-Mechanismus erfolgt. Bei der Verwendung einer elektronenreichen Dimethoxy-substituierten Brücke wie in 10+ kann der Elektronentransfer neben dem Superexchange- auch nach einem Hopping-Mechanismus erfolgen. Bei Verbindungen, die einen 9,10-Diethinylanthracenspacer (8+ und 9+) enthalten, liegt der Brückenzustand energetisch sogar deutlich tiefer als der Zustand mit einem oxidierten Triphenylaminredoxzentrum. Im zweiten Abschnitt wurden gerichtete Elektronentransferprozesse an Redoxkaskaden und Dendrimeren, die auf Triarylaminredoxzentren basieren, studiert. Die Möglichkeit, die Redoxpotentiale von Triphenylaminzentren durch Substituenten zu beeinflussen, erlaubt die Synthese von Kaskaden mit einem vorgegebenen Redoxgradienten. Innerhalb einer Kaskade, die ein Acridin-Fluorophor, ein 4-Chlor-substituiertes sowie ein 4-Methoxy-substituiertes Triphenylaminredoxzentrum enthält (18), kann nach Anregung des Acridin-Chromophors in polaren Lösungsmitteln ein ladungsgetrennter Zustand erreicht werden, worauf sowohl statische und zeitaufgelöste Fluoreszenzmessungen als auch transientenspektroskopische Untersuchungen hinweisen. Die Lebensdauer kann durch Verlängerung der Redoxkaskade durch ein weiteres Aminzentrum deutlich vergrößert werden. In unpolaren Lösungsmitteln erfolgt dagegen keine Ladungstrennung über die gesamte Kaskade. Ebenso tritt bei 20 (Kaskade aus Acridin, 4 Methoxy-substituiertem Triphenylamin und 4-Chlor-substituiertem Aminzentrum), wo der Redoxgradient entgegen zu 18 gerichtet ist, kein Ladungstransfer auf. Im dritten Teil dieser Arbeit wurden Verbindungen untersucht, die neben 1,4 Phenylendiamineinheiten in para-Position unsubstituierte Triphenylamine enthalten und sich elektrochemisch polymerisieren lassen. Die Eigenschaften der dotierten redoxaktiven Polymere werden durch die enthaltenen p-Phenylendiamin- und Benzidin-Substrukturen dominiert, wofür hauptsächlich die geringe Wechselwirkung der einzelne Redoxzentren untereinander verantwortlich ist. Impedanzspektroskopische Untersuchungen zeigen eine Zunahme der Leitfähigkeit der dotierten Polymerfilme, wobei der Ladungstransfer vermutlich durch Hopping zwischen den p-Phenylendiamin- und Benzidinuntereinheiten erfolgt. N2 - In this work electron transfer processes in systems containing triphenylamine redox centres were studied by spectroscopic and electrochemical as well as spectroelectrochemical methods. In the first part of this work bistriarylamine systems in analogy to N,N,N’,N’-tetra(4-methoxyphenyl)-1,4-phenylenediamine (1) were investigated. The radical cations of the studied compounds show broad and especially in the case of 1 highly asymmetric intervalence charge transfer absorptions that are typical for the mixed valence systems. The analysis of these IVCT bands according to Hush and a modified model related to the vibronic coupling theory shows that by substitution of the central phenylene spacer with naphthalene (2) or anthracene (3) respectively steric hindrance is increased. At the same time the Marcus reorganisational energy  decreases by increasing the size of the spacer’s -system. In general all three studied systems show very similar behaviour which can be seen from the relation of the energy of the IVCT band maximum to twice the value of the electronic coupling element. Especially within the modified vibronic coupling model this relation is very close to 1 for 1+, 2+ and 3+ which suggests that all three systems lie very near the Robin-Day class II to III borderline. Furthermore bistriarylamine systems connected via a 1,4-diethinylphenylene spacer have been investigated. Variation of the central spacer unit (1,4-diethynylphenylene (5), 1,4-diethynylnaphthalene (6) 1,4-diethynyl-2,5-dimethoxyphenylene (10)) allows for the stepwise decrease of the energy of a bridge oxidised state relative to the energy of states where the radical cation is localised at a triarylamine redox centre. The implied electron transfer processes could be described by a three state model with two independent electron transfer coordinates. In the case of electron deficient spacers like in 5+ electron transfer proceeds via a superexchange mechanism. With electron rich dimethoxy substituted bridges (10+) electron transfer occurs via superechange as well as by a hopping mechanism. In systems containing a 9,10-diethynylanthracene spacer the bridge oxidised state is energetically favoured over the states with an oxidised triphenylamine redox centre. In the second part directed electron transfer processes were studied in redox cascades and dendrimers based on triarylamine redox centres. The possibility to modify the redox potential of triphenylamine centres with substituents allows for the synthesis of cascades containing a specific redox potential gradient. Within a cascade which constitutes of an acridine fluorophor, a 4-chloro substituted triphenylamine as well as a 4-methoxy substituted triphenylamine redox centre (18) it is possible to obtain a charge separated state after excitation of the acridine chromophor in polar solvents as has been shown by time dependent fluorescence measurements as well as transient absorption investigations. The lifetime of the charge separated state can be increased dramatically by enlargement of the redox cascade with a further triphenylamine redox centre. In contrast no charge separation over the whole cascade could be observed in non-polar solvents. Also no charge separation occurs in 20 (a cascade containing acridine, a 4-methoxy substituted triphenylamine and a 4-chloro substituted amine redox centre) because here the redox potential gradient is directed contrary to 18. In the third part of this work electrochemically polymerisable systems containing 1,4-phenylenediamine units and unsubstituted and triphenylamines were studied. The properties of the doped redox active polymers are dominated by the p-phenylenediamine and benzidine substructures, a fact that can be explained mainly by the very weak interaction of the single redox centres. Electrochemical impedance measurements show an increase of the conductance of the doped polymer films. Charge transfer probably proceeds via hopping between the p-phenylenediamine and benzidine units. KW - Elektronentransfer KW - Triarylamine KW - Intervalenzverbindungen KW - Polymere KW - electron transfer KW - triarylamines KW - mixed valence compunds KW - polymers Y1 - 2003 UR - https://opus.bibliothek.uni-wuerzburg.de/opus4-wuerzburg/frontdoor/index/index/docId/723 UR - https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-8379 ER -