@phdthesis{Kagerer2024, author = {Kagerer, Philipp Thomas}, title = {Two-Dimensional Ferromagnetism and Topology at the Surface of MnBi\(_2\)Te\(_4\) - Bi\(_2\)Te\(_3\) Heterostructures - MBE Growth, Magnetism and Electronic Properties}, doi = {10.25972/OPUS-36012}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-360121}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {In this thesis, a model system of a magnetic topological heterostructure is studied, namely a heterosystem consisting of a single ferromagnetic septuple-layer (SL) of \(MnBi_2Te_4\) on the surface of the three-dimensional topological insulator \(Bi_2Te_3\). Using MBE and developing a specialized experimental setup, the first part of this thesis deals with the growth of \(Bi_2Te_3\) and thin films of \(MnBi_2Te_4\) on \(BaF_2\)-substrates by the co-evaporation of its binary constituents. The structural analysis is conducted along several suitable probes such as X-ray diffraction (XRD, XRR), AFM and scanning tunnelling electron microscopy (STEM). It is furthermore found that the growth of a single septuple-layer of \(MnBi_2Te_4\) on the surface of \(Bi_2Te_3\) can be facilitated. By using X-ray absorption and circular magnetic dichroism (XAS, XMCD), the magnetic properties of \(MnBi_2Te_4\) are explored down to the monolayer limit. The layered nature of the vdW crystal and a strong uniaxial magnetocrystalline anisotropy establish stable out-of plane magnetic order at the surface of \(MnBi_2Te_4\), which is stable even down to the 2D limit. Pushing the material system to there, i.e. a single SL \(MnBi_2Te_4\) further allows to study the phase transition of this 2D ferromagnet and extract its critical behaviour with \(T_c \, = \, 14.89~k\) and \(\beta \, = \, 0.484\). Utilizing bulk crystals of the ferromagnetic \(Fe_3GeTe_2\) as substrate allows to influence, enhance and bias the magnetism in the single SL of \(MnBi_2Te_4\). By growing heterostructures of the type \(MnBi_2Te_4\) -- n layer \(Bi_2Te_3\) -- \(Fe_3GeTe_2\)for n between 0 and 2, it is shown, that a considerable magnetic coupling can be introduced between the \(MnBi_2Te_4\) top-layer and the substrate. Finally the interplay between topology and magnetism in the ferromagnetic extension is studied directly by angle-resolved photoemission spectroscopy. The heterostructure is found to host a linearly dispersing TSS at the centre of the Brillouin zone. Using low temperature and high-resolution ARPES a large magnetic gap opening of \(\sim\) 35 meV is found at the Dirac point of the TSS. By following its temperature evolution, it is apparent that the scaling behaviour coincides with the magnetic order parameter of the modified surface.}, subject = {Molekularstrahlepitaxie}, language = {en} } @article{ChinaBurrowsWangetal.2018, author = {China, Swarup and Burrows, Susannah M. and Wang, Bingbing and Harder, Tristan H. and Weis, Johannes and Tanarhte, Meryem and Rizzo, Luciana V. and Brito, Joel and Cirino, Glauber G. and Ma, Po-Lun and Cliff, John and Artaxo, Paulo and Gilles, Mary K. and Laskin, Alexander}, title = {Fungal spores as a source of sodium salt particles in the Amazon basin}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-07066-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222492}, year = {2018}, abstract = {In the Amazon basin, particles containing mixed sodium salts are routinely observed and are attributed to marine aerosols transported from the Atlantic Ocean. Using chemical imaging analysis, we show that, during the wet season, fungal spores emitted by the forest biosphere contribute at least 30\% (by number) to sodium salt particles in the central Amazon basin. Hydration experiments indicate that sodium content in fungal spores governs their growth factors. Modeling results suggest that fungal spores account for ~69\% (31-95\%) of the total sodium mass during the wet season and that their fractional contribution increases during nighttime. Contrary to common assumptions that sodium-containing aerosols originate primarily from marine sources, our results suggest that locally-emitted fungal spores contribute substantially to the number and mass of coarse particles containing sodium. Hence, their role in cloud formation and contribution to salt cycles and the terrestrial ecosystem in the Amazon basin warrant further consideration.}, language = {en} } @article{KernHaagsEggeretal.2023, author = {Kern, Christian S. and Haags, Anja and Egger, Larissa and Yang, Xiaosheng and Kirschner, Hans and Wolff, Susanne and Seyller, Thomas and Gottwald, Alexander and Richter, Mathias and de Giovannini, Umberto and Rubio, Angel and Ramsey, Michael G. and Bocquet, Fran{\c{c}}ois C. and Soubatch, Serguei and Tautz, F. Stefan and Puschnig, Peter and Moser, Simon}, title = {Simple extension of the plane-wave final state in photoemission: bringing understanding to the photon-energy dependence of two-dimensional materials}, series = {Physical Review Research}, volume = {5}, journal = {Physical Review Research}, number = {3}, doi = {10.1103/PhysRevResearch.5.033075}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350330}, year = {2023}, abstract = {Angle-resolved photoemission spectroscopy (ARPES) is a method that measures orbital and band structure contrast through the momentum distribution of photoelectrons. Its simplest interpretation is obtained in the plane-wave approximation, according to which photoelectrons propagate freely to the detector. The photoelectron momentum distribution is then essentially given by the Fourier transform of the real-space orbital. While the plane-wave approximation is remarkably successful in describing the momentum distributions of aromatic compounds, it generally fails to capture kinetic-energy-dependent final-state interference and dichroism effects. Focusing our present study on quasi-freestanding monolayer graphene as the archetypical two-dimensional (2D) material, we observe an exemplary E\(_{kin}\)-dependent modulation of, and a redistribution of spectral weight within, its characteristic horseshoe signature around the \(\bar {K}\) and \(\bar {K´}\) points: both effects indeed cannot be rationalized by the plane-wave final state. Our data are, however, in remarkable agreement with ab initio time-dependent density functional simulations of a freestanding graphene layer and can be explained by a simple extension of the plane-wave final state, permitting the two dipole-allowed partial waves emitted from the C 2p\(_z\) orbitals to scatter in the potential of their immediate surroundings. Exploiting the absolute photon flux calibration of the Metrology Light Source, this scattered-wave approximation allows us to extract E\(_{kin}\)-dependent amplitudes and phases of both partial waves directly from photoemission data. The scattered-wave approximation thus represents a powerful yet intuitive refinement of the plane-wave final state in photoemission of 2D materials and beyond.}, language = {en} } @article{OPUS4-36018, title = {Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube}, series = {The Astrophysical Journal}, volume = {870}, journal = {The Astrophysical Journal}, number = {2}, publisher = {The American Astronomical Society}, organization = {The LIGO Scientific Collaboration and the Virgo Collaboration}, doi = {10.3847/1538-4357/aaf21d}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-360189}, pages = {1-16}, year = {2019}, abstract = {Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy neutrinos are signatures of such outflows. The detection of gravitational waves and high-energy neutrinos from common sources could help establish the connection between the dynamics of the progenitor and the properties of the outflow. We searched for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the Antares and IceCube neutrino observatories from the same time period. We focused on candidate events whose astrophysical origins could not be determined from a single messenger. We found no significant coincident candidate, which we used to constrain the rate density of astrophysical sources dependent on their gravitational-wave and neutrino emission processes.}, language = {en} } @article{SchadeBaderHuberetal.2023, author = {Schade, A. and Bader, A. and Huber, T. and Kuhn, S. and Czyszanowski, T. and Pfenning, A. and Rygała, M. and Smołka, T. and Motyka, M. and Sęk, G. and Hartmann, F. and H{\"o}fling, S.}, title = {Monolithic high contrast grating on GaSb/AlAsSb based epitaxial structures for mid-infrared wavelength applications}, series = {Optics Express}, volume = {31}, journal = {Optics Express}, number = {10}, doi = {10.1364/OE.487119}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350346}, pages = {16025-16034}, year = {2023}, abstract = {We demonstrate monolithic high contrast gratings (MHCG) based on GaSb/AlAs0.08Sb0.92 epitaxial structures with sub-wavelength gratings enabling high reflection of unpolarized mid-infrared radiation at the wavelength range from 2.5 to 5 µm. We study the reflectivity wavelength dependence of MHCGs with ridge widths ranging from 220 to 984 nm and fixed 2.6 µm grating period and demonstrate that peak reflectivity of above 0.7 can be shifted from 3.0 to 4.3 µm for ridge widths from 220 to 984 nm, respectively. Maximum reflectivity of up to 0.9 at 4 µm can be achieved. The experiments are in good agreement with numerical simulations, confirming high process flexibility in terms of peak reflectivity and wavelength selection. MHCGs have hitherto been regarded as mirrors enabling high reflection of selected light polarization. With this work, we show that thoughtfully designed MHCG yields high reflectivity for both orthogonal polarizations simultaneously. Our experiment demonstrates that MHCGs are promising candidates to replace conventional mirrors like distributed Bragg reflectors to realize resonator based optical and optoelectronic devices such as resonant cavity enhanced light emitting diodes and resonant cavity enhanced photodetectors in the mid-infrared spectral region, for which epitaxial growth of distributed Bragg reflectors is challenging.}, language = {en} } @article{StebaniBlaimerZableretal.2023, author = {Stebani, Jannik and Blaimer, Martin and Zabler, Simon and Neun, Tilmann and Pelt, Dani{\"e}l M. and Rak, Kristen}, title = {Towards fully automated inner ear analysis with deep-learning-based joint segmentation and landmark detection framework}, series = {Scientific Reports}, volume = {13}, journal = {Scientific Reports}, doi = {10.1038/s41598-023-45466-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357411}, year = {2023}, abstract = {Automated analysis of the inner ear anatomy in radiological data instead of time-consuming manual assessment is a worthwhile goal that could facilitate preoperative planning and clinical research. We propose a framework encompassing joint semantic segmentation of the inner ear and anatomical landmark detection of helicotrema, oval and round window. A fully automated pipeline with a single, dual-headed volumetric 3D U-Net was implemented, trained and evaluated using manually labeled in-house datasets from cadaveric specimen (N = 43) and clinical practice (N = 9). The model robustness was further evaluated on three independent open-source datasets (N = 23 + 7 + 17 scans) consisting of cadaveric specimen scans. For the in-house datasets, Dice scores of 0.97 and 0.94, intersection-over-union scores of 0.94 and 0.89 and average Hausdorf distances of 0.065 and 0.14 voxel units were achieved. The landmark localization task was performed automatically with an average localization error of 3.3 and 5.2 voxel units. A robust, albeit reduced performance could be attained for the catalogue of three open-source datasets. Results of the ablation studies with 43 mono-parametric variations of the basal architecture and training protocol provided task-optimal parameters for both categories. Ablation studies against single-task variants of the basal architecture showed a clear performance beneft of coupling landmark localization with segmentation and a dataset-dependent performance impact on segmentation ability.}, language = {en} } @article{VogelRueckertGreineretal.2023, author = {Vogel, P. and R{\"u}ckert, M. A. and Greiner, C. and G{\"u}nther, J. and Reichl, T. and Kampf, T. and Bley, T. A. and Behr, V. C. and Herz, S.}, title = {iMPI: portable human-sized magnetic particle imaging scanner for real-time endovascular interventions}, series = {Scientific Reports}, volume = {13}, journal = {Scientific Reports}, doi = {10.1038/s41598-023-37351-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357794}, year = {2023}, abstract = {Minimally invasive endovascular interventions have become an important tool for the treatment of cardiovascular diseases such as ischemic heart disease, peripheral artery disease, and stroke. X-ray fluoroscopy and digital subtraction angiography are used to precisely guide these procedures, but they are associated with radiation exposure for patients and clinical staff. Magnetic Particle Imaging (MPI) is an emerging imaging technology using time-varying magnetic fields combined with magnetic nanoparticle tracers for fast and highly sensitive imaging. In recent years, basic experiments have shown that MPI has great potential for cardiovascular applications. However, commercially available MPI scanners were too large and expensive and had a small field of view (FOV) designed for rodents, which limited further translational research. The first human-sized MPI scanner designed specifically for brain imaging showed promising results but had limitations in gradient strength, acquisition time and portability. Here, we present a portable interventional MPI (iMPI) system dedicated for real-time endovascular interventions free of ionizing radiation. It uses a novel field generator approach with a very large FOV and an application-oriented open design enabling hybrid approaches with conventional X-ray-based angiography. The feasibility of a real-time iMPI-guided percutaneous transluminal angioplasty (PTA) is shown in a realistic dynamic human-sized leg model.}, language = {en} } @article{RudnoRudzińskiSyperekAndrezejewskietal.2017, author = {Rudno-Rudziński, W. and Syperek, M. and Andrezejewski, J. and Maryński, A. and Misiewicz, J. and Somers, A. and H{\"o}fling, S. and Reithmaier, J. P. and Sęk, G.}, title = {Carrier delocalization in InAs/InGaAlAs/InP quantum-dash-based tunnel injection system for 1.55 μm emission}, series = {AIP Advances}, volume = {7}, journal = {AIP Advances}, number = {1}, doi = {10.1063/1.4975634}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-181787}, year = {2017}, abstract = {We have investigated optical properties of hybrid two-dimensional-zero-dimensional (2D-0D) tunnel structures containing strongly elongated InAs/InP(001) quantum dots (called quantum dashes), emitting at 1.55 μm. These quantum dashes (QDashes) are separated by a 2.3 nm-width barrier from an InGaAs quantum well (QW), lattice matched to InP. We have tailored quantum-mechanical coupling between the states confined in QDashes and a QW by changing the QW thickness. By combining modulation spectroscopy and photoluminescence excitation, we have determined the energies of all relevant optical transitions in the system and proven the carrier transfer from the QW to the QDashes, which is the fundamental requirement for the tunnel injection scheme. A transformation between 0D and mixed-type 2D-0D character of an electron and a hole confinement in the ground state of the hybrid system have been probed by time-resolved photoluminescence that revealed considerable changes in PL decay time with the QW width changes. The experimental discoveries have been explained by band structure calculations in the framework of the eight-band k·p model showing that they are driven by delocalization of the lowest energy hole state. The hole delocalization process from the 0D QDash confinement is unfavorable for optical devices based on such tunnel injection structures.}, language = {en} } @article{RyczkoMisiewiczHoflingetal.2017, author = {Ryczko, K. and Misiewicz, J. and Hofling, S. and Kamp, M. and Sęk, G.}, title = {Optimizing the active region of interband cascade lasers for passive mode-locking}, series = {AIP Advances}, volume = {7}, journal = {AIP Advances}, number = {1}, doi = {10.1063/1.4973937}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-181790}, year = {2017}, abstract = {The work proposes possible designs of active regions for a mode-locked interband cascade laser emitting in the mid infrared. For that purpose we investigated the electronic structure properties of respectively modified GaSb-based type II W-shaped quantum wells, including the effect of external bias in order to simultaneously fulfil the requirements for both the absorber as well as the gain sections of a device. The results show that introducing multiple InAs layers in type II InAs/GaInSb quantum wells or introducing a tensely-strained GaAsSb layer into "W-shaped" type II QWs offers significant difference in optical transitions' oscillator strengths (characteristic lifetimes) of the two oppositely polarized parts of such a laser, being promising for utilization in mode-locked devices.}, language = {en} } @article{OPUS4-22774, title = {Characterisation of the Hamamatsu photomultipliers for the KM3NeT Neutrino Telescope}, series = {Journal of Instrumentation}, volume = {13}, journal = {Journal of Instrumentation}, organization = {The KM3NeT collaboration}, doi = {10.1088/1748-0221/13/05/P05035}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227744}, pages = {1-14}, year = {2018}, abstract = {The Hamamatsu R12199-023-inch photomultiplier tube is the photodetector chosen for the first phase of the KM3NeT neutrino telescope. About 7000 photomultipliers have been characterised for dark count rate, timing spread and spurious pulses. The quantum efficiency, the gain and the peak-to-valley ratio have also been measured for a sub-sample in order to determine parameter values needed as input to numerical simulations of the detector.}, language = {en} }