@article{BreitenbachHelfrichFoersterDandekar2021, author = {Breitenbach, Tim and Helfrich-F{\"o}rster, Charlotte and Dandekar, Thomas}, title = {An effective model of endogenous clocks and external stimuli determining circadian rhythms}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-021-95391-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261655}, pages = {16165}, year = {2021}, abstract = {Circadian endogenous clocks of eukaryotic organisms are an established and rapidly developing research field. To investigate and simulate in an effective model the effect of external stimuli on such clocks and their components we developed a software framework for download and simulation. The application is useful to understand the different involved effects in a mathematical simple and effective model. This concerns the effects of Zeitgebers, feedback loops and further modifying components. We start from a known mathematical oscillator model, which is based on experimental molecular findings. This is extended with an effective framework that includes the impact of external stimuli on the circadian oscillations including high dose pharmacological treatment. In particular, the external stimuli framework defines a systematic procedure by input-output-interfaces to couple different oscillators. The framework is validated by providing phase response curves and ranges of entrainment. Furthermore, Aschoffs rule is computationally investigated. It is shown how the external stimuli framework can be used to study biological effects like points of singularity or oscillators integrating different signals at once. The mathematical framework and formalism is generic and allows to study in general the effect of external stimuli on oscillators and other biological processes. For an easy replication of each numerical experiment presented in this work and an easy implementation of the framework the corresponding Mathematica files are fully made available. They can be downloaded at the following link: https://www.biozentrum.uni-wuerzburg.de/bioinfo/computing/circadian/.}, language = {en} } @phdthesis{Breitenbach2019, author = {Breitenbach, Tim}, title = {A mathematical optimal control based approach to pharmacological modulation with regulatory networks and external stimuli}, doi = {10.25972/OPUS-17436}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-174368}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {In this work models for molecular networks consisting of ordinary differential equations are extended by terms that include the interaction of the corresponding molecular network with the environment that the molecular network is embedded in. These terms model the effects of the external stimuli on the molecular network. The usability of this extension is demonstrated with a model of a circadian clock that is extended with certain terms and reproduces data from several experiments at the same time. Once the model including external stimuli is set up, a framework is developed in order to calculate external stimuli that have a predefined desired effect on the molecular network. For this purpose the task of finding appropriate external stimuli is formulated as a mathematical optimal control problem for which in order to solve it a lot of mathematical methods are available. Several methods are discussed and worked out in order to calculate a solution for the corresponding optimal control problem. The application of the framework to find pharmacological intervention points or effective drug combinations is pointed out and discussed. Furthermore the framework is related to existing network analysis tools and their combination for network analysis in order to find dedicated external stimuli is discussed. The total framework is verified with biological examples by comparing the calculated results with data from literature. For this purpose platelet aggregation is investigated based on a corresponding gene regulatory network and associated receptors are detected. Furthermore a transition from one to another type of T-helper cell is analyzed in a tumor setting where missing agents are calculated to induce the corresponding switch in vitro. Next a gene regulatory network of a myocardiocyte is investigated where it is shown how the presented framework can be used to compare different treatment strategies with respect to their beneficial effects and side effects quantitatively. Moreover a constitutively activated signaling pathway, which thus causes maleficent effects, is modeled and intervention points with corresponding treatment strategies are determined that steer the gene regulatory network from a pathological expression pattern to physiological one again.}, subject = {Bioinformatik}, language = {en} } @article{BrehmKoziolRauschendorferetal.2014, author = {Brehm, Klaus and Koziol, Uriel and Rauschendorfer, Theresa and Rodr{\´i}guez, Luis Zanon and Krohne, Georg}, title = {The unique stem cell system of the immortal larva of the human parasite Echinococcus multilocularis}, doi = {10.1186/2041-9139-5-10}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-110315}, year = {2014}, abstract = {Background It is believed that in tapeworms a separate population of undifferentiated cells, the germinative cells, is the only source of cell proliferation throughout the life cycle (similar to the neoblasts of free living flatworms). In Echinococcus multilocularis, the metacestode larval stage has a unique development, growing continuously like a mass of vesicles that infiltrate the tissues of the intermediate host, generating multiple protoscoleces by asexual budding. This unique proliferation potential indicates the existence of stem cells that are totipotent and have the ability for extensive self-renewal. Results We show that only the germinative cells proliferate in the larval vesicles and in primary cell cultures that undergo complete vesicle regeneration, by using a combination of morphological criteria and by developing molecular markers of differentiated cell types. The germinative cells are homogeneous in morphology but heterogeneous at the molecular level, since only sub-populations express homologs of the post-transcriptional regulators nanos and argonaute. Important differences are observed between the expression patterns of selected neoblast marker genes of other flatworms and the E. multilocularis germinative cells, including widespread expression in E. multilocularis of some genes that are neoblast-specific in planarians. Hydroxyurea treatment results in the depletion of germinative cells in larval vesicles, and after recovery following hydroxyurea treatment, surviving proliferating cells grow as patches that suggest extensive self-renewal potential for individual germinative cells. Conclusions In E. multilocularis metacestodes, the germinative cells are the only proliferating cells, presumably driving the continuous growth of the larval vesicles. However, the existence of sub-populations of the germinative cells is strongly supported by our data. Although the germinative cells are very similar to the neoblasts of other flatworms in function and in undifferentiated morphology, their unique gene expression pattern and the evolutionary loss of conserved stem cells regulators suggest that important differences in their physiology exist, which could be related to the unique biology of E. multilocularis larvae.}, language = {en} } @article{BrehmKoziolKrohne2013, author = {Brehm, Klaus and Koziol, Uriel and Krohne, Georg}, title = {Anatomy and development of the larval nervous system in Echinococcus multilocularis}, series = {Frontiers in Zoology}, journal = {Frontiers in Zoology}, doi = {10.1186/1742-9994-10-24}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96504}, year = {2013}, abstract = {Background The metacestode larva of Echinococcus multilocularis (Cestoda: Taeniidae) develops in the liver of intermediate hosts (typically rodents, or accidentally in humans) as a labyrinth of interconnected cysts that infiltrate the host tissue, causing the disease alveolar echinococcosis. Within the cysts, protoscoleces (the infective stage for the definitive canid host) arise by asexual multiplication. These consist of a scolex similar to that of the adult, invaginated within a small posterior body. Despite the importance of alveolar echinococcosis for human health, relatively little is known about the basic biology, anatomy and development of E. multilocularis larvae, particularly with regard to their nervous system. Results We describe the existence of a subtegumental nerve net in the metacestode cysts, which is immunoreactive for acetylated tubulin-α and contains small populations of nerve cells that are labeled by antibodies raised against several invertebrate neuropeptides. However, no evidence was found for the existence of cholinergic or serotoninergic elements in the cyst wall. Muscle fibers occur without any specific arrangement in the subtegumental layer, and accumulate during the invaginations of the cyst wall that form brood capsules, where protoscoleces develop. The nervous system of the protoscolex develops independently of that of the metacestode cyst, with an antero-posterior developmental gradient. The combination of antibodies against several nervous system markers resulted in a detailed description of the protoscolex nervous system, which is remarkably complex and already similar to that of the adult worm. Conclusions We provide evidence for the first time of the existence of a nervous system in the metacestode cyst wall, which is remarkable given the lack of motility of this larval stage, and the lack of serotoninergic and cholinergic elements. We propose that it could function as a neuroendocrine system, derived from the nervous system present in the bladder tissue of other taeniids. The detailed description of the development and anatomy of the protoscolex neuromuscular system is a necessary first step toward the understanding of the developmental mechanisms operating in these peculiar larval stages.}, language = {en} } @article{BrehmHemerKonradetal.2014, author = {Brehm, Klaus and Hemer, Sarah and Konrad, Christian and Spiliotis, Markus and Koziol, Uriel and Schaack, Dominik and F{\"o}rster, Sabine and Gelmedin, Verena and Stadelmann, Britta and Dandekar, Thomas and Hemphill, Andrew}, title = {Host insulin stimulates Echinococcus multilocularis insulin signalling pathways and larval development}, doi = {10.1186/1741-7007-12-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-110357}, year = {2014}, abstract = {Background The metacestode of the tapeworm Echinococcus multilocularis is the causative agent of alveolar echinococcosis, a lethal zoonosis. Infections are initiated through establishment of parasite larvae within the intermediate host's liver, where high concentrations of insulin are present, followed by tumour-like growth of the metacestode in host organs. The molecular mechanisms determining the organ tropism of E. multilocularis or the influences of host hormones on parasite proliferation are poorly understood. Results Using in vitro cultivation systems for parasite larvae we show that physiological concentrations (10 nM) of human insulin significantly stimulate the formation of metacestode larvae from parasite stem cells and promote asexual growth of the metacestode. Addition of human insulin to parasite larvae led to increased glucose uptake and enhanced phosphorylation of Echinococcus insulin signalling components, including an insulin receptor-like kinase, EmIR1, for which we demonstrate predominant expression in the parasite's glycogen storage cells. We also characterized a second insulin receptor family member, EmIR2, and demonstrated interaction of its ligand binding domain with human insulin in the yeast two-hybrid system. Addition of an insulin receptor inhibitor resulted in metacestode killing, prevented metacestode development from parasite stem cells, and impaired the activation of insulin signalling pathways through host insulin. Conclusions Our data indicate that host insulin acts as a stimulant for parasite development within the host liver and that E. multilocularis senses the host hormone through an evolutionarily conserved insulin signalling pathway. Hormonal host-parasite cross-communication, facilitated by the relatively close phylogenetic relationship between E. multilocularis and its mammalian hosts, thus appears to be important in the pathology of alveolar echinococcosis. This contributes to a closer understanding of organ tropism and parasite persistence in larval cestode infections. Furthermore, our data show that Echinococcus insulin signalling pathways are promising targets for the development of novel drugs.}, language = {en} } @article{BrehmHaasGoebeletal.1992, author = {Brehm, Klaus and Haas, Albert and Goebel, Werner and Kreft, J{\"u}rgen}, title = {A gene encoding a superoxide dismutase of the facultative intracellular bacterium Listeria monocytogenes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60515}, year = {1992}, abstract = {A gene (Imsod) encoding superoxide dismutase (SOD; EC 1.15.1.1) of the facultative intracellular pathogen, Listeria monocytogenes, was cloned by functional complementation of an SOD-deficient Escherichia coli mutant. The nucleotide sequence was determined and the deduced amino acid (aa) sequence (202 aa) showed close similarity to manganese-containing SOD's from other organisms. Subunits of the recombinant L. monocytogenes SOD (re-SOD) and of both E. coli SODs formed enzymatically active hybrid enzymes in vivo. DNA/DNA-hybridization experiments showed that this type of recombinant re-sod gene is conserved within the genus Listeria.}, subject = {Biologie}, language = {en} } @phdthesis{Breher2009, author = {Breher, Stephanie}, title = {Die kardiale Funktion von Popdc1 in der Maus: Vom Gen zum Ph{\"a}n}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-37283}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Die Popeye domain containing (Popdc)-Gene bilden eine evolution{\"a}r stark konservierte Genfamilie mit pr{\"a}ferenzieller Expression im Herzen und in der Skelettmuskulatur. In dieser Arbeit konnte gezeigt werden, dass Popdc1 in kardialen Myozyten in Glanzstreifen, lateralen Membranen und im T-Tubuli-System exprimiert wird und mit Ionenkan{\"a}len und anderen myozyt{\"a}ren Membranproteinen wie Cav1.2, Caveolin 3 und NCX1 kolokalisiert ist. Im ventrikul{\"a}ren Reizleitungssystem ist die Expression von Popdc1 gegen{\"u}ber dem ventrikul{\"a}ren Arbeitsmyokard erh{\"o}ht, w{\"a}hrend Atrium und Sinusknoten nahezu {\"a}quivalente Expressionsdom{\"a}nen aufweisen. Mithilfe von elektrophysiologischen Untersuchungen konnte bei den Popdc1-Nullmutanten eine stressinduzierte Sinusbradykardie festgestellt werden, die altersabh{\"a}ngig auftritt und auf Sinuspausen zur{\"u}ckzuf{\"u}hren ist. Histologische Untersuchungen, unter Zuhilfenahme des Sinusknotenmarkers HCN4, zeigten einen Zellverlust im inferioren Teil des Sinusknotens. Popdc1 ist ein Transmembranprotein, das eine 150 Aminos{\"a}ure umfassende, stark konservierte Popeye-Dom{\"a}ne aufweist. F{\"u}r diese Dom{\"a}ne konnte auf struktureller Ebene eine Homologie zu zyklischen Nukleotid-Bindungsdom{\"a}nen vorhergesagt und eine Bindung an cAMP und cGMP experimentell demonstriert werden. Es handelt sich bei den Popdc-Proteinen um einen neuen Zweig der Bindungsproteine f{\"u}r zyklische Nukleotidmonophosphate (cNMP). Die Bindungssequenz weist signifikante Unterschiede zu anderen bereits identifizierten cNMP-Bindungsproteinen auf. Weiterhin wurde die Interaktion von Popdc1 mit TREK1, einem Mitglied der Tandemporenkan{\"a}le untersucht. Es zeigte sich, dass Popdc1 nach Koexpression in Froschoozyten, den TREK1-Strom erh{\"o}ht und dass die \&\#946;-adrenerge Inhibition des TREK1 Kanals durch Popdc1 verst{\"a}rkt wird. Im Arbeitsmyokard, im kardialen Reizleitungssystem und in kotransfizierten Cos7-Zellen werden beide Proteine {\"u}berlappend exprimiert. Diese Daten zeigen, dass Popdc1 eine wichtige Funktion bei der Regulation der Schrittmacheraktivit{\"a}t, der Aufrechterhaltung der Sinusknotenmorphologie und der Modulation von Ionenkan{\"a}len aufweist. Interessanterweise wurden von unserer Arbeitsgruppe bereits die gleichen Ph{\"a}notypen f{\"u}r die Popdc2 Maus beschrieben, sodass die Popdc Genfamilie {\"u}berlappende und redundante Funktionen aufweist.}, subject = {Sinusknoten}, language = {de} } @article{BreezeVaissiereBommarcoetal.2014, author = {Breeze, Tom D. and Vaissiere, Bernhard E. and Bommarco, Riccardo and Petanidou, Theodora and Seraphides, Nicos and Kozak, Lajos and Scheper, Jeroen and Biesmeijer, Jacobus C. and Kleijn, David and Gyldenk{\ae}rne, Steen and Moretti, Marco and Holzschuh, Andrea and Steffan-Dewenter, Ingolf and Stout, Jane C. and P{\"a}rtel, Meelis and Zobel, Martin and Potts, Simon G.}, title = {Agricultural Policies Exacerbate Honeybee Pollination Service Supply-Demand Mismatches Across Europe}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {1}, issn = {1932-6203}, doi = {10.1371/journal.pone.0082996}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117692}, pages = {e82996}, year = {2014}, abstract = {Declines in insect pollinators across Europe have raised concerns about the supply of pollination services to agriculture. Simultaneously, EU agricultural and biofuel policies have encouraged substantial growth in the cultivated area of insect pollinated crops across the continent. Using data from 41 European countries, this study demonstrates that the recommended number of honeybees required to provide crop pollination across Europe has risen 4.9 times as fast as honeybee stocks between 2005 and 2010. Consequently, honeybee stocks were insufficient to supply >90\% of demands in 22 countries studied. These findings raise concerns about the capacity of many countries to cope with major losses of wild pollinators and highlight numerous critical gaps in current understanding of pollination service supplies and demands, pointing to a pressing need for further research into this issue.}, language = {en} } @article{BrandstaetterRoesslerKleineidam2011, author = {Brandst{\"a}tter, Andreas and R{\"o}ssler, W. and Kleineidam, C. J.}, title = {Friends and foes from an ant brain's point of view - neuronal correlates of colony odors in a social insect}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69046}, year = {2011}, abstract = {Background: Successful cooperation depends on reliable identification of friends and foes. Social insects discriminate colony members (nestmates/friends) from foreign workers (non-nestmates/foes) by colony-specific, multi-component colony odors. Traditionally, complex processing in the brain has been regarded as crucial for colony recognition. Odor information is represented as spatial patterns of activity and processed in the primary olfactory neuropile, the antennal lobe (AL) of insects, which is analogous to the vertebrate olfactory bulb. Correlative evidence indicates that the spatial activity patterns reflect odor-quality, i.e., how an odor is perceived. For colony odors, alternatively, a sensory filter in the peripheral nervous system was suggested, causing specific anosmia to nestmate colony odors. Here, we investigate neuronal correlates of colony odors in the brain of a social insect to directly test whether they are anosmic to nestmate colony odors and whether spatial activity patterns in the AL can predict how odor qualities like ''friend'' and ''foe'' are attributed to colony odors. Methodology/Principal Findings: Using ant dummies that mimic natural conditions, we presented colony odors and investigated their neuronal representation in the ant Camponotus floridanus. Nestmate and non-nestmate colony odors elicited neuronal activity: In the periphery, we recorded sensory responses of olfactory receptor neurons (electroantennography), and in the brain, we measured colony odor specific spatial activity patterns in the AL (calcium imaging). Surprisingly, upon repeated stimulation with the same colony odor, spatial activity patterns were variable, and as variable as activity patterns elicited by different colony odors. Conclusions: Ants are not anosmic to nestmate colony odors. However, spatial activity patterns in the AL alone do not provide sufficient information for colony odor discrimination and this finding challenges the current notion of how odor quality is coded. Our result illustrates the enormous challenge for the nervous system to classify multi-component odors and indicates that other neuronal parameters, e.g., precise timing of neuronal activity, are likely necessary for attribution of odor quality to multi-component odors.}, subject = {Ameisen}, language = {en} } @phdthesis{Brandstaetter2010, author = {Brandstaetter, Andreas Simon}, title = {Neuronal correlates of nestmate recognition in the carpenter ant, Camponotus floridanus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-55963}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Cooperation is beneficial for social groups and is exemplified in its most sophisticated form in social insects. In particular, eusocial Hymenoptera, like ants and honey bees, exhibit a level of cooperation only rarely matched by other animals. To assure effective defense of group members, foes need to be recognized reliably. Ants use low-volatile, colony-specific profiles of cuticular hydrocarbons (colony odor) to discriminate colony members (nestmates) from foreign workers (non-nestmates). For colony recognition, it is assumed that multi-component colony odors are compared to a neuronal template, located in a so far unidentified part of the nervous system, where a mismatch results in aggression. Alternatively, a sensory filter in the periphery of the nervous system has been suggested to act as a template, causing specific anosmia to nestmate colony odor due to sensory adaptation and effectively blocking perception of nestmates. Colony odors are not stable, but change over time due to environmental influences. To adjust for this, the recognition system has to be constantly updated (template reformation). In this thesis, I provide evidence that template reformation can be induced artificially, by modifying the sensory experience of carpenter ants (Camponotus floridanus; Chapter 1). The results of the experiments showed that template reformation is a relatively slow process taking several hours and this contradicts the adaptation-based sensory filter hypothesis. This finding is supported by first in-vivo measurements describing the neuronal processes underlying template reformation (Chapter 5). Neurophysiological measurements were impeded at the beginning of this study by the lack of adequate technical means to present colony odors. In a behavioral assay, I showed that tactile interaction is not necessary for colony recognition, although colony odors are of very low volatility (Chapter 2). I developed a novel stimulation technique (dummy-delivered stimulation) and tested its suitability for neurophysiological experiments (Chapter 3). My experiments showed that dummy-delivered stimulation is especially advantageous for presentation of low-volatile odors. Colony odor concentration in headspace was further increased by moderately heating the dummies, and this allowed me to measure neuronal correlates of colony odors in the peripheral and the central nervous system using electroantennography and calcium imaging, respectively (Chapter 4). Nestmate and non-nestmate colony odor elicited strong neuronal responses in olfactory receptor neurons of the antenna and in the functional units of the first olfactory neuropile of the ant brain, the glomeruli of the antennal lobe (AL). My results show that ants are not anosmic to nestmate colony odor and this clearly invalidates the previously suggested sensory filter hypothesis. Advanced two-photon microscopy allowed me to investigate the neuronal representation of colony odors in different neuroanatomical compartments of the AL (Chapter 5). Although neuronal activity was distributed inhomogeneously, I did not find exclusive representation restricted to a single AL compartment. This result indicates that information about colony odors is processed in parallel, using the computational power of the whole AL network. In the AL, the patterns of glomerular activity (spatial activity patterns) were variable, even in response to repeated stimulation with the same colony odor (Chapter 4\&5). This finding is surprising, as earlier studies indicated that spatial activity patterns in the AL reflect how an odor is perceived by an animal (odor quality). Under natural conditions, multi-component odors constitute varying and fluctuating stimuli, and most probably animals are generally faced with the problem that these elicit variable neuronal responses. Two-photon microscopy revealed that variability was higher in response to nestmate than to non-nestmate colony odor (Chapter 5), possibly reflecting plasticity of the AL network, which allows template reformation. Due to their high variability, spatial activity patterns in response to different colony odors were not sufficiently distinct to allow attribution of odor qualities like 'friend' or 'foe'. This finding challenges our current notion of how odor quality of complex, multi-component odors is coded. Additional neuronal parameters, e.g. precise timing of neuronal activity, are most likely necessary to allow discrimination. The lower variability of activity patterns elicited by non-nestmate compared to nestmate colony odor might facilitate recognition of non-nestmates at the next level of the olfactory pathway. My research efforts made the colony recognition system accessible for direct neurophysiological investigations. My results show that ants can perceive their own nestmates. The neuronal representation of colony odors is distributed across AL compartments, indicating parallel processing. Surprisingly, the spatial activity patterns in response to colony are highly variable, raising the question how odor quality is coded in this system. The experimental advance presented in this thesis will be useful to gain further insights into how social insects discriminate friends and foes. Furthermore, my work will be beneficial for the research field of insect olfaction as colony recognition in social insects is an excellent model system to study the coding of odor quality and long-term memory mechanisms underlying recognition of complex, multi-component odors.}, subject = {Neuroethologie}, language = {en} }