@article{BaertschLutzSchlatter1991, author = {Baertsch, A. and Lutz, Werner K. and Schlatter, C.}, title = {Effect of inhalation exposure regimen on DNA binding potency of 1,2-dichloroethane in the rat}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60743}, year = {1991}, abstract = {1 ,2-Dichloroethane (DCE) was reported to be carcinogenic in rats in a long-tenn bioassay using gavage in com oil (24 and 48 mg/kg/day), but not by inhalation (up to 150-250 ppm, 7 h/day, 5 days/week). The daily dose metabolized was similar in the two experiments. In order to address this discrepancy, the genotoxicity of DCE was investigated in vivo under different exposure conditions. Fernale F-344 rats (183-188 g) were exposed to [1,2-14C]DCE in a closed inhalation chamber to either a low, constant concentration (0.3 mg/l = 80 ppm for 4 h) or to a peak concentration (up to 18 mg/1 = 4400 ppm) for a few minutes. After 12 h in the chamber, the dose metabolized under the two conditions was 34 mg/kg and 140 mg/k:g. DNA was isolated from liver and lung and was purified to constant specific radioactivity. DNA was enzymaticaBy hydrolyzed to the 3' -nucleotides which were separated by reverse phase HPLC. Most radioactivity eluted without detectable or with little optical density' indicating that the major part of the DNA radioactivity was due to covalent binding of the test compound. The Ievel of DNA adducts was expressed in the dose-nonnalized units ofthe Covalent Binding Index, CBI = f.Lmol adduct per mol DNA nucleotide/ mmol DCE per kg body wt. In liver DNA, the different exposure regimens resulted in markedly different CBI values of 1.8 and 69, for "constant-low" and ''peak" DCE exposure Ievels. In the Jung, the respective values were 0.9 and 31. It is concluded that the DNA darnage by DCE depends upon the concentration-time profile and that the carcinogenic potency determined in the gavage study should not be used for low-Ievel inhalation exposure.}, subject = {Toxikologie}, language = {en} } @article{AlldrickLutz1989, author = {Alldrick, A. J. and Lutz, Werner K.}, title = {Covalent binding of [2-\(^{14}\)C]2-amino-3,8-dimethylimidazo[4,5-f]-quinoxaline (MeIQx) to mouse DNA in vivo}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60832}, year = {1989}, abstract = {Fernale BALB/c mice were administered intragastrically with equimolar amounts of either [2-\(^{14}\)C]2-amino-3,8-dimethyi[ 4,5-J]qulnoxaline (MeiQx) or 2-acetylamino[9-\(^{14}\)C]fluorene (2AAF). DNA was isolated from tissues of mice killed either 6 or 24 h after administration. Analysis of liver DNA nucleotide digests by HPLC analysis revealed that all of the radioactivity was attributable to adduct formation. Tbe specific activities of DNA samples were converted to covalent bindlog indices (CBI, J.LIDOI adduct per mol DNA nucleotides/mmol chemical app6ed per kg animal body weight). CBI values of 25 and 9 were detennined for 2AAF and MeiQx in tbe llvers of mice killed 6 h after dosing. The values were in general agreement with the moderate carcinogenic potency of these compounds. The specific activities of DNA preparations obtained from the lddneys, spleens, stomachs, small intestines and large intestlnes of mice treated witb MeiQx and killed 6 h after doslng were S- to 35-times less tban those obtained witb the llver. DNA isolated from tbe lungs (a target organ for MeiQx tumorigenicity) of MeiQx-treated mice was not radiolabeUed at tbe limit of detection (CBI <0.3). With tbe exception of tbe gastrolntestinal tract, the specific activities of DNA samples isolated from mice killed 6 h after administration were higher than those from mice killed after 24 h.}, subject = {Toxikologie}, language = {en} } @article{AdamAhrweilerSahaMoelleretal.1993, author = {Adam, W. and Ahrweiler, M. and Saha-M{\"o}ller, C. R. and Sauter, M. and Sch{\"o}nberger, A. and Epe, B. and M{\"u}ller, E. and Schiffmann, D. and Stopper, Helga and Wild, D.}, title = {Genotoxicity studies of benzofuran dioxetanes and epoxides with isolated DNA, bacteria and mammalian cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-63420}, year = {1993}, abstract = {1.2-Dioxetanes, very reactive and high energy molecules. are involved as labile intermediates in dioxygenase- activated aerobic metabolism and in physiological processes. Various toxico1ogica1 tests reveal that dioxetanes are indeed genotoxic. In supercoiled DNA of bacteriophage PM2 they induce endonucleasesensitive sites, most of them are FPG protein-sensitive base modifications (8-hydroxyguanine, fonnamidopyrimidines). Pyrimidinedimersand sites ofbase loss (AP sites) which were probed by UV endonuclease and exonuclease 111 are minor lesions in this system. While the alky1-substituted dioxetanes do not show any significant mutagenic activity in different Salmonella typhimurium strains, heteroarene dioxetanes such as benzofuran and furocoumarin dioxetanes are strongly mutagenic in S. typhimurium strain TA I 00. DNA adducts formed with an intermediary alkyJating agent appear to be responsible for the mutagenic activity of benzofuran dioxetane. We assume that the benzofuran epoxides, generated in situ from benzofuran dioxetanes by deoxygenation are the ultimate mutagens of the latter. since benzofuran epoxides are highly mutagenic in the S. typhimurium strain TAIOO and they form DNA adducts. as detected by the 212Ppostlabelling technique. Our results imply that the type of D NA darnage promoted by dioxetanes is dependent on the structural feature of dioxetanes. Furthermore, the direct photochemical DNA darnage by energy transfer. i.e., pyrimidine dimers, plays a minor role in the genotoxicity of dioxetanes. Instead, photooxidation dominates in isolated DNA. while radical darnage and alkylation prevail in the cellular system.}, subject = {Toxikologie}, language = {en} }