@article{SalingerHuLiuetal.2018, author = {Salinger, Tim and Hu, Kai and Liu, Dan and Taleh, Scharoch and Herrmann, Sebastian and Oder, Daniel and Gensler, Daniel and M{\"u}ntze, Jonas and Ertl, Georg and Lorenz, Kristina and Frantz, Stefan and Weidemann, Frank and Nordbeck, Peter}, title = {Association between Comorbidities and Progression of Transvalvular Pressure Gradients in Patients with Moderate and Severe Aortic Valve Stenosis}, series = {Cardiology Research and Practice}, journal = {Cardiology Research and Practice}, doi = {10.1155/2018/3713897}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227291}, pages = {3713897, 1-7}, year = {2018}, abstract = {Background. Fast progression of the transaortic mean gradient (P-mean) is relevant for clinical decision making of valve replacement in patients with moderate and severe aortic stenosis (AS) patients. However, there is currently little knowledge regarding the determinants affecting progression of transvalvular gradient in AS patients. Methods. This monocentric retrospective study included consecutive patients presenting with at least two transthoracic echocardiography examinations covering a time interval of one year or more between April 2006 and February 2016 and diagnosed as moderate or severe aortic stenosis at the final echocardiographic examination. Laboratory parameters, medication, and prevalence of eight known cardiac comorbidities and risk factors (hypertension, diabetes, coronary heart disease, peripheral artery occlusive disease, cerebrovascular disease, renal dysfunction, body mass index >= 30 Kg/m(2), and history of smoking) were analyzed. Patients were divided into slow (P-mean < 5 mmHg/year) or fast (P-mean >= 5 mmHg/year) progression groups. Results. A total of 402 patients (mean age 78 +/- 9.4 years, 58\% males) were included in the study. Mean follow-up duration was 3.4 +/- 1.9 years. The average number of cardiac comorbidities and risk factors was 3.1 +/- 1.6. Average number of cardiac comorbidities and risk factors was higher in patients in slow progression group than in fast progression group (3.3 +/- 1.5 vs 2.9 +/- 1.7; P = 0.036). Patients in slow progression group had more often coronary heart disease (49.2\% vs 33.6\%; P = 0.003) compared to patients in fast progression group. LDL-cholesterol values were lower in the slow progression group (100 +/- 32.6 mg/dl vs 110.8 +/- 36.6 mg/dl; P = 0.005). Conclusion. These findings suggest that disease progression of aortic valve stenosis is faster in patients with fewer cardiac comorbidities and risk factors, especially if they do not have coronary heart disease. Further prospective studies are warranted to investigate the outcome of patients with slow versus fast progression of transvalvular gradient with regards to comorbidities and risk factors.}, language = {en} } @article{WagenhaeuserRickertSommeretal.2022, author = {Wagenh{\"a}user, Laura and Rickert, Vanessa and Sommer, Claudia and Wanner, Christoph and Nordbeck, Peter and Rost, Simone and {\"U}{\c{c}}eyler, Nurcan}, title = {X-chromosomal inactivation patterns in women with Fabry disease}, series = {Molecular Genetics \& Genomic Medicine}, volume = {10}, journal = {Molecular Genetics \& Genomic Medicine}, number = {9}, doi = {10.1002/mgg3.2029}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312795}, year = {2022}, abstract = {Background Although Fabry disease (FD) is an X-linked lysosomal storage disorder caused by mutations in the α-galactosidase A gene (GLA), women may develop severe symptoms. We investigated X-chromosomal inactivation patterns (XCI) as a potential determinant of symptom severity in FD women. Patients and Methods We included 95 women with mutations in GLA (n = 18 with variants of unknown pathogenicity) and 50 related men, and collected mouth epithelial cells, venous blood, and skin fibroblasts for XCI analysis using the methylation status of the androgen receptor gene. The mutated X-chromosome was identified by comparison of samples from relatives. Patients underwent genotype categorization and deep clinical phenotyping of symptom severity. Results 43/95 (45\%) women carried mutations categorized as classic. The XCI pattern was skewed (i.e., ≥75:25\% distribution) in 6/87 (7\%) mouth epithelial cell samples, 31/88 (35\%) blood samples, and 9/27 (33\%) skin fibroblast samples. Clinical phenotype, α-galactosidase A (GAL) activity, and lyso-Gb3 levels did not show intergroup differences when stratified for X-chromosomal skewing and activity status of the mutated X-chromosome. Conclusions X-inactivation patterns alone do not reliably reflect the clinical phenotype of women with FD when investigated in biomaterial not directly affected by FD. However, while XCI patterns may vary between tissues, blood frequently shows skewing of XCI patterns.}, language = {en} } @article{KoepingShehataDielerSchneideretal.2018, author = {K{\"o}ping, Maria and Shehata-Dieler, Wafaa and Schneider, Dieter and Cebulla, Mario and Oder, Daniel and M{\"u}ntze, Jonas and Nordbeck, Peter and Wanner, Christoph and Hagen, Rudolf and Schraven, Sebastian P.}, title = {Characterization of vertigo and hearing loss in patients with Fabry disease}, series = {Orphanet Journal of Rare Diseases}, volume = {13}, journal = {Orphanet Journal of Rare Diseases}, doi = {10.1186/s13023-018-0882-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-222818}, year = {2018}, abstract = {Background Fabry Disease (FD) is an X-linked hereditary lysosomal storage disorder which leads to a multisystemic intralysosomal accumulation of globotriaosylceramid (Gb3). Besides prominent renal and cardiac organ involvement, patients commonly complain about vestibulocochlear symptoms like high-frequency hearing loss, tinnitus and vertigo. However, comprehensive data especially on vertigo remain scarce. The aim of this study was to examine the prevalence and characteristics of vertigo and hearing loss in patients with FD, depending on renal and cardiac parameters and get hints about the site and the pattern of the lesions. Methods Single-center study with 57 FD patients. Every patient underwent an oto-rhino-laryngological examination as well as videonystagmography and vestibular evoked myogenic potentials (VEMPs) and audiological measurements using pure tone audiometry and auditory brainstem response audiometry (ABR). Renal function was measured by eGFR, cardiac impairment was graduated by NYHA class. Results More than one out of three patients (35.1\%) complained about hearing loss, 54.4\% about vertigo and 28.1\% about both symptom. In 74\% a sensorineural hearing loss of at least 25 dB was found, ABR could exclude any retrocochlear lesion. Caloric testing showed abnormal values in 71.9\%, VEMPs were pathological in 68\%. A correlation between the side or the shape of hearing loss and pathological vestibular testing could not be revealed. Conclusions Hearing loss and vertigo show a high prevalence in FD. While hearing loss seems due to a cochlear lesion, peripheral vestibular as well as central nervous pathologies cause vertigo. Thus, both the site of lesion and the pathophysiological patterns seem to differ.}, language = {en} } @article{LauUeceylerCairnsetal.2022, author = {Lau, Kolja and {\"U}{\c{c}}eyler, Nurcan and Cairns, Tereza and Lorenz, Lora and Sommer, Claudia and Schindeh{\"u}tte, Magnus and Amann, Kerstin and Wanner, Christoph and Nordbeck, Peter}, title = {Gene variants of unknown significance in Fabry disease: Clinical characteristics of c.376AG (p.Ser126Gly)}, series = {Molecular Genetics \& Genomic Medicine}, volume = {10}, journal = {Molecular Genetics \& Genomic Medicine}, number = {5}, doi = {10.1002/mgg3.1912}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312817}, year = {2022}, abstract = {Background Anderson-Fabry disease (FD) is an X-linked lysosomal storage disorder with varying organ involvement and symptoms, depending on the underlying mutation in the alpha-galactosidase A gene (HGNC: GLA). With genetic testing becoming more readily available, it is crucial to precisely evaluate pathogenicity of each genetic variant, in order to determine whether there is or might be not a need for FD-specific therapy in affected patients and relatives at the time point of presentation or in the future. Methods This case series investigates the clinical impact of the specific GLA gene variant c.376A>G (p.Ser126Gly) in five (one heterozygous and one homozygous female, three males) individuals from different families, who visited our center between 2009 and 2021. Comprehensive neurological, nephrological and cardiac examinations were performed in all cases. One patient received a follow-up examination after 12 years. Results Index events leading to suspicion of FD were mainly unspecific neurological symptoms. However, FD-specific biomarkers, imaging examinations (i.e., brain MRI, heart MRI), and tissue-specific diagnostics, including kidney and skin biopsies, did not reveal evidence for FD-specific symptoms or organ involvement but showed normal results in all cases. This includes findings from 12-year follow-up in one patient with renal biopsy. Conclusion These findings suggest that p.Ser126Gly represents a benign GLA gene variant which per se does not cause FD. Precise clinical evaluation in individuals diagnosed with genetic variations of unknown significance should be performed to distinguish common symptoms broadly prevalent in the general population from those secondary to FD.}, language = {en} } @article{TolstikAliGuoetal.2022, author = {Tolstik, Elen and Ali, Nairveen and Guo, Shuxia and Ebersbach, Paul and M{\"o}llmann, Dorothe and Arias-Loza, Paula and Dierks, Johann and Schuler, Irina and Freier, Erik and Debus, J{\"o}rg and Baba, Hideo A. and Nordbeck, Peter and Bocklitz, Thomas and Lorenz, Kristina}, title = {CARS imaging advances early diagnosis of cardiac manifestation of Fabry disease}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {10}, issn = {1422-0067}, doi = {10.3390/ijms23105345}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284427}, year = {2022}, abstract = {Vibrational spectroscopy can detect characteristic biomolecular signatures and thus has the potential to support diagnostics. Fabry disease (FD) is a lipid disorder disease that leads to accumulations of globotriaosylceramide in different organs, including the heart, which is particularly critical for the patient's prognosis. Effective treatment options are available if initiated at early disease stages, but many patients are late- or under-diagnosed. Since Coherent anti-Stokes Raman (CARS) imaging has a high sensitivity for lipid/protein shifts, we applied CARS as a diagnostic tool to assess cardiac FD manifestation in an FD mouse model. CARS measurements combined with multivariate data analysis, including image preprocessing followed by image clustering and data-driven modeling, allowed for differentiation between FD and control groups. Indeed, CARS identified shifts of lipid/protein content between the two groups in cardiac tissue visually and by subsequent automated bioinformatic discrimination with a mean sensitivity of 90-96\%. Of note, this genotype differentiation was successful at a very early time point during disease development when only kidneys are visibly affected by globotriaosylceramide depositions. Altogether, the sensitivity of CARS combined with multivariate analysis allows reliable diagnostic support of early FD organ manifestation and may thus improve diagnosis, prognosis, and possibly therapeutic monitoring of FD.}, language = {en} } @article{GramGenslerAlbertovaetal.2022, author = {Gram, Maximilian and Gensler, Daniel and Albertova, Petra and Gutjahr, Fabian Tobias and Lau, Kolja and Arias-Loza, Paula-Anahi and Jakob, Peter Michael and Nordbeck, Peter}, title = {Quantification correction for free-breathing myocardial T1ρ mapping in mice using a recursively derived description of a T\(_{1p}\)\(^{*}\) relaxation pathway}, series = {Journal of Cardiovascular Magnetic Resonance}, volume = {24}, journal = {Journal of Cardiovascular Magnetic Resonance}, number = {1}, doi = {10.1186/s12968-022-00864-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300491}, year = {2022}, abstract = {Background Fast and accurate T1ρ mapping in myocardium is still a major challenge, particularly in small animal models. The complex sequence design owing to electrocardiogram and respiratory gating leads to quantification errors in in vivo experiments, due to variations of the T\(_{1p}\) relaxation pathway. In this study, we present an improved quantification method for T\(_{1p}\) using a newly derived formalism of a T\(_{1p}\)\(^{*}\) relaxation pathway. Methods The new signal equation was derived by solving a recursion problem for spin-lock prepared fast gradient echo readouts. Based on Bloch simulations, we compared quantification errors using the common monoexponential model and our corrected model. The method was validated in phantom experiments and tested in vivo for myocardial T\(_{1p}\) mapping in mice. Here, the impact of the breath dependent spin recovery time T\(_{rec}\) on the quantification results was examined in detail. Results Simulations indicate that a correction is necessary, since systematically underestimated values are measured under in vivo conditions. In the phantom study, the mean quantification error could be reduced from - 7.4\% to - 0.97\%. In vivo, a correlation of uncorrected T\(_{1p}\) with the respiratory cycle was observed. Using the newly derived correction method, this correlation was significantly reduced from r = 0.708 (p < 0.001) to r = 0.204 and the standard deviation of left ventricular T\(_{1p}\) values in different animals was reduced by at least 39\%. Conclusion The suggested quantification formalism enables fast and precise myocardial T\(_{1p}\) quantification for small animals during free breathing and can improve the comparability of study results. Our new technique offers a reasonable tool for assessing myocardial diseases, since pathologies that cause a change in heart or breathing rates do not lead to systematic misinterpretations. Besides, the derived signal equation can be used for sequence optimization or for subsequent correction of prior study results.}, language = {en} } @article{GramGenslerWinteretal.2022, author = {Gram, Maximilian and Gensler, Daniel and Winter, Patrick and Seethaler, Michael and Arias-Loza, Paula Anahi and Oberberger, Johannes and Jakob, Peter Michael and Nordbeck, Peter}, title = {Fast myocardial T\(_{1P}\) mapping in mice using k-space weighted image contrast and a Bloch simulation-optimized radial sampling pattern}, series = {Magnetic Resonance Materials in Physics, Biology and Medicine}, volume = {35}, journal = {Magnetic Resonance Materials in Physics, Biology and Medicine}, number = {2}, issn = {1352-8661}, doi = {10.1007/s10334-021-00951-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268903}, pages = {325-340}, year = {2022}, abstract = {Purpose T\(_{1P}\) dispersion quantification can potentially be used as a cardiac magnetic resonance index for sensitive detection of myocardial fibrosis without the need of contrast agents. However, dispersion quantification is still a major challenge, because T\(_{1P}\) mapping for different spin lock amplitudes is a very time consuming process. This study aims to develop a fast and accurate T\(_{1P}\) mapping sequence, which paves the way to cardiac T1ρ dispersion quantification within the limited measurement time of an in vivo study in small animals. Methods A radial spin lock sequence was developed using a Bloch simulation-optimized sampling pattern and a view-sharing method for image reconstruction. For validation, phantom measurements with a conventional sampling pattern and a gold standard sequence were compared to examine T\(_{1P}\) quantification accuracy. The in vivo validation of T\(_{1P}\) mapping was performed in N = 10 mice and in a reproduction study in a single animal, in which ten maps were acquired in direct succession. Finally, the feasibility of myocardial dispersion quantification was tested in one animal. Results The Bloch simulation-based sampling shows considerably higher image quality as well as improved T\(_{1P}\) quantification accuracy (+ 56\%) and precision (+ 49\%) compared to conventional sampling. Compared to the gold standard sequence, a mean deviation of - 0.46 ± 1.84\% was observed. The in vivo measurements proved high reproducibility of myocardial T\(_{1P}\) mapping. The mean T\(_{1P}\) in the left ventricle was 39.5 ± 1.2 ms for different animals and the maximum deviation was 2.1\% in the successive measurements. The myocardial T\(_{1P}\) dispersion slope, which was measured for the first time in one animal, could be determined to be 4.76 ± 0.23 ms/kHz. Conclusion This new and fast T\(_{1P}\) quantification technique enables high-resolution myocardial T\(_{1P}\) mapping and even dispersion quantification within the limited time of an in vivo study and could, therefore, be a reliable tool for improved tissue characterization.}, language = {en} } @article{ChenLiuWeidemannetal.2021, author = {Chen, Menjia and Liu, Dan and Weidemann, Frank and Lengenfelder, Bj{\"o}rn Daniel and Ertl, Georg and Hu, Kai and Frantz, Stefan and Nordbeck, Peter}, title = {Echocardiographic risk factors of left ventricular thrombus in patients with acute anterior myocardial infarction}, series = {ESC Heart Failure}, volume = {8}, journal = {ESC Heart Failure}, number = {6}, doi = {10.1002/ehf2.13605}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261067}, pages = {5248-5258}, year = {2021}, abstract = {Aims This study aimed to identify echocardiographic determinants of left ventricular thrombus (LVT) formation after acute anterior myocardial infarction (MI). Methods and results This case-control study comprised 55 acute anterior MI patients with LVT as cases and 55 acute anterior MI patients without LVT as controls, who were selected from a cohort of consecutive patients with ischemic heart failure in our hospital. The cases and controls were matched for age, sex, and left ventricular ejection fraction. LVT was detected by routine/contrast echocardiography or cardiac magnetic resonance imaging during the first 3 months following MI. Formation of apical aneurysm after MI was independently associated with LVT formation [72.0\% vs. 43.5\%, odds ratio (OR) = 5.06, 95\% confidence interval (CI) 1.65-15.48, P = 0.005]. Echocardiographic risk factors associated with LVT formation included reduced mitral annular plane systolic excursion (<7 mm, OR = 4.69, 95\% CI 1.84-11.95, P = 0.001), moderate-severe diastolic dysfunction (OR = 2.71, 95\% CI 1.11-6.57, P = 0.028), and right ventricular (RV) dysfunction [reduced tricuspid annular plane systolic excursion < 17 mm (OR = 5.48, 95\% CI 2.12-14.13, P < 0.001), reduced RV fractional area change < 0.35 (OR = 3.32, 95\% CI 1.20-9.18, P = 0.021), and enlarged RV mid diameter (per 5 mm increase OR = 1.62, 95\% CI 1.12-2.34, P = 0.010)]. Reduced tricuspid annular plane systolic excursion (<17 mm) significantly associated with increased risk of LVT in anterior MI patients (OR = 3.84, 95\% CI 1.37-10.75, P = 0.010), especially in those patients without apical aneurysm (OR = 5.12, 95\% CI 1.45-18.08, P = 0.011), independent of body mass index, hypertension, anaemia, mitral annular plane systolic excursion, and moderate-severe diastolic dysfunction. Conclusions Right ventricular dysfunction as determined by reduced TAPSE or RV fractional area change is independently associated with LVT formation in acute anterior MI patients, especially in the setting of MI patients without the formation of an apical aneurysm. This study suggests that besides assessment of left ventricular abnormalities, assessment of concomitant RV dysfunction is of importance on risk stratification of LVT formation in patients with acute anterior MI.}, language = {en} } @article{LiuHuLauetal.2021, author = {Liu, Dan and Hu, Kai and Lau, Kolja and Kiwitz, Tobias and Robitzkat, Katharina and Hammel, Clara and Lengenfelder, Bj{\"o}rn Daniel and Ertl, Georg and Frantz, Stefan and Nordbeck, Peter}, title = {Impact of diastolic dysfunction on outcome in heart failure patients with mid-range or reduced ejection fraction}, series = {ESC Heart Failure}, volume = {8}, journal = {ESC Heart Failure}, number = {4}, doi = {10.1002/ehf2.13352}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258894}, pages = {2802-2815}, year = {2021}, abstract = {Aims The role of diastolic dysfunction (DD) in prognostic evaluation in heart failure (HF) patients with impaired systolic function remains unclear. We investigated the impact of echocardiography-defined DD on survival in HF patients with mid-range (HFmrEF, EF 41-49\%) and reduced ejection fraction (HFrEF, EF < 40\%). Methods and results A total of 2018 consecutive hospitalized HF patients were retrospectively included and divided in two groups based on baseline EF: HFmrEF group (n = 951, aged 69 ± 13 years, 74.2\% male) and HFrEF group (n = 1067, aged 68 ± 13 years, 76.3\% male). Clinical data were collected and analysed. All patients completed ≥1 year clinical follow-up. The primary endpoint was defined as all-cause death (including heart transplantation) and cardiovascular (CV)-related death. All-cause mortality (30.8\% vs. 24.9\%, P = 0.003) and CV mortality (19.1\% vs. 13.5\%, P = 0.001) were significantly higher in the HFrEF group than the HFmrEF group during follow-up [median 24 (13-36) months]. All-cause mortality increased in proportion to DD severity (mild, moderate, and severe) in either HFmrEF (17.1\%, 25.4\%, and 37.0\%, P < 0.001) or HFrEF (18.9\%, 30.3\%, and 39.2\%, P < 0.001) patients. The risk of all-cause mortality [hazard ratio (HR) = 1.347, P = 0.015] and CV mortality (HR = 1.508, P = 0.007) was significantly higher in HFrEF patients with severe DD compared with non-severe DD after adjustment for identified clinical and echocardiographic covariates. For HFmrEF patients, severe DD was independently associated with increased all-cause mortality (HR = 1.358, P = 0.046) but not with CV mortality (HR = 1.155, P = 0.469). Conclusions Echocardiography-defined severe DD is independently associated with increased all-cause mortality in patients with HFmrEF and HFrEF.}, language = {en} } @article{GhafoorNordbeckRitteretal.2022, author = {Ghafoor, Hina and Nordbeck, Peter and Ritter, Oliver and Pauli, Paul and Schulz, Stefan M.}, title = {Can Religiosity and Social Support Explain Effects of Trait Emotional Intelligence on Health-Related Quality of Life: A Cross-Cultural Study}, series = {Journal of Religion and Health}, volume = {61}, journal = {Journal of Religion and Health}, number = {1}, issn = {0022-4197}, doi = {10.1007/s10943-020-01163-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232823}, pages = {158-174}, year = {2022}, abstract = {Religion and social support along with trait emotional intelligence (EI) help individuals to reduce stress caused by difficult situations. Their implications may vary across cultures in reference to predicting health-related quality of life (HRQoL). A convenience sample of N = 200 chronic heart failure (CHF) patients was recruited at cardiology centers in Germany (n = 100) and Pakistan (n = 100). Results indicated that trait-EI predicted better mental component of HRQoL in Pakistani and German CHF patients. Friends as social support appeared relevant for German patients only. Qualitative data indicate an internal locus of control in German as compared to Pakistani patients. Strengthening the beneficial role of social support in Pakistani patients is one example of how the current findings may inspire culture-specific treatment to empower patients dealing with the detrimental effects of CHF.}, language = {en} }