@article{OuyangRueheZhangetal.2022, author = {Ouyang, Guanghui and R{\"u}he, Jessica and Zhang, Yang and Lin, Mei-Jin and Liu, Minghua and W{\"u}rthner, Frank}, title = {Intramolecular Energy and Solvent-Dependent Chirality Transfer within a BINOL-Perylene Hetero-Cyclophane}, series = {Angewandte Chemie International Edition}, volume = {61}, journal = {Angewandte Chemie International Edition}, number = {31}, doi = {10.1002/anie.202206706}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318818}, year = {2022}, abstract = {Multichromophoric macrocycles and cyclophanes are important supramolecular architectures for the elucidation of interchromophoric interactions originating from precise spatial organization. Herein, by combining an axially chiral binaphthol bisimide (BBI) and a bay-substituted conformationally labile twisted perylene bisimide (PBI) within a cyclophane of well-defined geometry, we report a chiral PBI hetero-cyclophane (BBI-PBI) that shows intramolecular energy and solvent-regulated chirality transfer from the BBI to the PBI subunit. Excellent spectral overlap and spatial arrangement of BBI and PBI lead to efficient excitation energy transfer and subsequent PBI emission with high quantum yield (80-98 \%) in various solvents. In contrast, chirality transfer is strongly dependent on the respective solvent as revealed by circular dichroism (CD) spectroscopy. The combination of energy and chirality transfer affords a bright red circularly polarized luminescence (CPL) from the PBI chromophore by excitation of BBI.}, language = {en} } @article{HongKimKimetal.2022, author = {Hong, Yongseok and Kim, Woojae and Kim, Taeyeon and Kaufmann, Christina and Kim, Hyungjun and W{\"u}rthner, Frank and Kim, Dongho}, title = {Real-time Observation of Structural Dynamics Triggering Excimer Formation in a Perylene Bisimide Folda-dimer by Ultrafast Time-Domain Raman Spectroscopy}, series = {Angewandte Chemie International Edition}, volume = {61}, journal = {Angewandte Chemie International Edition}, number = {13}, doi = {10.1002/anie.202114474}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318788}, year = {2022}, abstract = {In π-conjugated organic photovoltaic materials, an excimer state has been generally regarded as a trap state which hinders efficient excitation energy transport. But despite wide investigations of the excimer for overcoming the undesirable energy loss, the understanding of the relationship between the structure of the excimer in stacked organic compounds and its properties remains elusive. Here, we present the landscape of structural dynamics from the excimer formation to its relaxation in a co-facially stacked archetypical perylene bisimide folda-dimer using ultrafast time-domain Raman spectroscopy. We directly captured vibrational snapshots illustrating the ultrafast structural evolution triggering the excimer formation along the interchromophore coordinate on the complex excited-state potential surfaces and following evolution into a relaxed excimer state. Not only does this work showcase the ultrafast structural dynamics necessary for the excimer formation and control of excimer characteristics but also provides important criteria for designing the π-conjugated organic molecules.}, language = {en} } @article{BoldStolteShoyamaetal.2022, author = {Bold, Kevin and Stolte, Matthias and Shoyama, Kazutaka and Krause, Ana-Maria and Schmiedel, Alexander and Holzapfel, Marco and Lambert, Christoph and W{\"u}rthner, Frank}, title = {Macrocyclic Donor-Acceptor Dyads Composed of Oligothiophene Half-Cycles and Perylene Bisimides}, series = {Chemistry - A European Journal}, volume = {28}, journal = {Chemistry - A European Journal}, number = {30}, doi = {10.1002/chem.202200355}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-276435}, year = {2022}, abstract = {A series of donor-acceptor (D-A) macrocyclic dyads consisting of an electron-poor perylene bisimide (PBI) π-scaffold bridged with electron-rich α-oligothiophenes bearing four, five, six and seven thiophene units between the two phenyl-imide substituents has been synthesized and characterized by steady-state UV/Vis absorption and fluorescence spectroscopy, cyclic and differential pulse voltammetry as well as transient absorption spectroscopy. Tying the oligothiophene strands in a conformationally fixed macrocyclic arrangement leads to a more rigid π-scaffold with vibronic fine structure in the respective absorption spectra. Electrochemical analysis disclosed charged state properties in solution which are strongly dependent on the degree of rigidification within the individual macrocycle. Investigation of the excited state dynamics revealed an oligothiophene bridge size-dependent fast charge transfer process for the macrocyclic dyads upon PBI subunit excitation.}, language = {en} } @article{WenNowakKrolNagleretal.2019, author = {Wen, Xinbo and Nowak-Kr{\´o}l, Agnieszka and Nagler, Oliver and Kraus, Felix and Zhu, Na and Zheng, Nan and M{\"u}ller, Matthias and Schmidt, David and Xie, Zengqi and W{\"u}rthner, Frank}, title = {Tetrahydroxy-perylene bisimide embedded in zinc oxide thin film as electron transporting layer for high performance non-fullerene organic solar cells}, series = {Angewandte Chemie International Edition}, volume = {58}, journal = {Angewandte Chemie International Edition}, number = {37}, doi = {10.1002/anie.201907467}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204723}, pages = {13051-13055}, year = {2019}, abstract = {By introduction of four hydroxy (HO) groups into the two perylene bisimide (PBI) bay areas, new HO-PBI ligands were obtained which upon deprotonation can complex ZnII ions and photosensitize semiconductive zinc oxide thin films. Such coordination is beneficial for dispersing PBI photosensitizer molecules evenly into metal oxide films to fabricate organic-inorganic hybrid interlayers for organic solar cells. Supported by the photoconductive effect of the ZnO:HO-PBI hybrid interlayers, improved electron collection and transportation is achieved in fullerene and non-fullerene polymer solar cell devices, leading to remarkable power conversion efficiencies of up to 15.95 \% for a non-fullerene based organic solar cell.}, language = {en} }