@phdthesis{Zink2024, author = {Zink, Johannes}, title = {Algorithms for Drawing Graphs and Polylines with Straight-Line Segments}, doi = {10.25972/OPUS-35475}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-354756}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Graphs provide a key means to model relationships between entities. They consist of vertices representing the entities, and edges representing relationships between pairs of entities. To make people conceive the structure of a graph, it is almost inevitable to visualize the graph. We call such a visualization a graph drawing. Moreover, we have a straight-line graph drawing if each vertex is represented as a point (or a small geometric object, e.g., a rectangle) and each edge is represented as a line segment between its two vertices. A polyline is a very simple straight-line graph drawing, where the vertices form a sequence according to which the vertices are connected by edges. An example of a polyline in practice is a GPS trajectory. The underlying road network, in turn, can be modeled as a graph. This book addresses problems that arise when working with straight-line graph drawings and polylines. In particular, we study algorithms for recognizing certain graphs representable with line segments, for generating straight-line graph drawings, and for abstracting polylines. In the first part, we first examine, how and in which time we can decide whether a given graph is a stick graph, that is, whether its vertices can be represented as vertical and horizontal line segments on a diagonal line, which intersect if and only if there is an edge between them. We then consider the visual complexity of graphs. Specifically, we investigate, for certain classes of graphs, how many line segments are necessary for any straight-line graph drawing, and whether three (or more) different slopes of the line segments are sufficient to draw all edges. Last, we study the question, how to assign (ordered) colors to the vertices of a graph with both directed and undirected edges such that no neighboring vertices get the same color and colors are ascending along directed edges. Here, the special property of the considered graph is that the vertices can be represented as intervals that overlap if and only if there is an edge between them. The latter problem is motivated by an application in automated drawing of cable plans with vertical and horizontal line segments, which we cover in the second part. We describe an algorithm that gets the abstract description of a cable plan as input, and generates a drawing that takes into account the special properties of these cable plans, like plugs and groups of wires. We then experimentally evaluate the quality of the resulting drawings. In the third part, we study the problem of abstracting (or simplifying) a single polyline and a bundle of polylines. In this problem, the objective is to remove as many vertices as possible from the given polyline(s) while keeping each resulting polyline sufficiently similar to its original course (according to a given similarity measure).}, subject = {Graphenzeichnen}, language = {en} } @phdthesis{Jihyoung2024, author = {Jihyoung, Choi}, title = {Development of an Add-On Electrode for Non-Invasive Monitoring in Bioreactor Cultures and Medical Devices}, doi = {10.25972/OPUS-35823}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-358232}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Electrochemical impedance spectroscopy (EIS) is a valuable technique analyzing electrochemical behavior of biological systems such as electrical characterization of cells and biomolecules, drug screening, and biomaterials in biomedical field. In EIS, an alternating current (AC) power signal is applied to the biological system, and the impedance of the system is measured over a range of frequencies. In vitro culture models of endothelial or epithelial barrier tissue can be achieved by culturing barrier tissue on scaffolds made with synthetic or biological materials that provide separate compartments (apical and basal sides), allowing for further studies on drug transport. EIS is a great candidate for non-invasive and real-time monitoring of the electrical properties that correlate with barrier integrity during the tissue modeling. Although commercially available transendothelial/transepithelial electrical resistance (TEER) measurement devices are widely used, their use is particularly common in static transwell culture. EIS is considered more suitable than TEER measurement devices in bioreactor cultures that involve dynamic fluid flow to obtain accurate and reliable measurements. Furthermore, while TEER measurement devices can only assess resistance at a single frequency, EIS measurements can capture both resistance and capacitance properties of cells, providing additional information about the cellular barrier's characteristics across various frequencies. Incorporating EIS into a bioreactor system requires the careful optimization of electrode integration within the bioreactor setup and measurement parameters to ensure accurate EIS measurements. Since bioreactors vary in size and design depending on the purpose of the study, most studies have reported using an electrode system specifically designed for a particular bioreactor. The aim of this work was to produce multi-applicable electrodes and established methods for automated non-invasive and real-time monitoring using the EIS technique in bioreactor cultures. Key to the electrode material, titanium nitride (TiN) coating was fabricated on different substrates (materials and shape) using physical vapor deposition (PVD) and housed in a polydimethylsiloxane (PDMS) structure to allow the electrodes to function as independent units. Various electrode designs were evaluated for double-layer capacitance and morphology using EIS and scanning electron microscopy (SEM), respectively. The TiN-coated tube electrode was identified as the optimal choice. Furthermore, EIS measurements were performed to examine the impact of influential parameters related to culture conditions on the TiN-coated electrode system. In order to demonstrate the versatility of the electrodes, these electrodes were then integrated into in different types of perfusion bioreactors for monitoring barrier cells. Blood-brain barrier (BBB) cells were cultured in the newly developed dynamic flow bioreactor, while human umblical vascular endothelial cells (HUVECs) and Caco-2 cells were cultured in the miniature hollow fiber bioreactor (HFBR). As a result, the TiN-coated tube electrode system enabled investigation of BBB barrier integrity in long-term bioreactor culture. While EIS measurement could not detect HUVECs electrical properties in miniature HFBR culture, there was the possibility of measuring the barrier integrity of Caco-2 cells, indicating potential usefulness for evaluating their barrier function. Following the bioreactor cultures, the application of the TiN-coated tube electrode was expanded to hemofiltration, based on the hypothesis that the EIS system may be used to monitor clotting or clogging phenomena in hemofiltration. The findings suggest that the EIS monitoring system can track changes in ion concentration of blood before and after hemofiltration in real-time, which may serve as an indicator of clogging of filter membranes. Overall, our research demonstrates the potential of TiN-coated tube electrodes for sensitive and versatile non-invasive monitoring in bioreactor cultures and medical devices.}, subject = {Monitoring}, language = {en} } @phdthesis{Ulrich2024, author = {Ulrich, Johannes}, title = {Molekulare Charaktierisierung einer DyP-Typ Peroxidase des Humanparasiten \(Echinococcus\) \(multilocularis\)}, doi = {10.25972/OPUS-35714}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357143}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Die Alveol{\"a}re Echinokokkose (AE) ist eine t{\"o}dliche Infektionserkrankung, die durch den parasit{\"a}ren Plattwurm Echinococcus multilocularis verursacht wird. Genomanalysen von E. multilocularis ergaben ein Gen, das laut Vorhersage f{\"u}r eine DyP-Typ Peroxidase codiere. Ziel dieser Arbeit ist die biologische Funktion des codierten Enzyms besser zu verstehen und Hinweise auf eine m{\"o}gliche Rolle in der Abwehr von Reaktiven Sauerstoffspezies (ROS) zu erlangen. Das Gen wurde heterolog in E. Coli exprimiert und molekulare Charakteristika des Gens mit bioinformatischen und molekularbiologischen Methoden untersucht. Quantitative RT-PCR Untersuchungen gaben Aufschluss {\"u}ber das Transkriptprofil von emipox in unterschiedlichen Entwicklungsstadien von E. mulitlocularis. Mittels Whole-Mount In Situ-Hybridisierung (WMISH) wurden die Transkripte zudem lokalisiert und ihre Beziehung zum Stammzellsystem von E. multilocularis n{\"a}her untersucht. Die Zugeh{\"o}rigkeit von EmIPOX zur Gruppe der DyP-Typ Peroxidasen wurde best{\"a}tigt. Homologe beim Menschen kommen nicht vor. Es konnte nachgewiesen werden, dass Transkripte von emipox auch, aber keinesfalls ausschließlich, in Stammzellen vorliegen. {\"U}berdurchschnittlich viele Transkripte liegen im aktivierten Protoscolex und im Metacestoden ex vivo aus einer infizierten Wirtsleber vor. Untersuchungen zur Enzymaktivit{\"a}t von EmIPOX zeigten neben einer Peroxidase- auch eine Katalaseaktivit{\"a}t. Die vorliegende Arbeit ist die erste Charakterisierung einer DyP-Typ Peroxidase bei Tieren. Sie legt nahe, dass EmIPOX eine Rolle in der Entgiftung von ROS in E. multilocularis spielt und stellt den Charakter von EmIPOX als potenzieller pharmakologischer Zielstruktur heraus.}, subject = {Fuchsbandwurm}, language = {de} } @phdthesis{Kutschka2024, author = {Kutschka, Ilona}, title = {Activation of the integrated stress response induces remodeling of cardiac metabolism in Barth Syndrome}, doi = {10.25972/OPUS-35818}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-358186}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Barth Syndrome (BTHS) is an inherited X-chromosomal linked disorder, characterized by early development of cardiomyopathy, immune system defects, skeletal muscle myopathy and growth retardation. The disease displays a wide variety of symptoms including heart failure, exercise intolerance and fatigue due to the muscle weakness. The cause of the disease are mutations in the gene encoding for the mitochondrial transacylase Tafazzin (TAZ), which is important for remodeling of the phospholipid cardiolipin (CL). All mutations result in a pronounced decrease of the functional enzyme leading to an increase of monolysocardiolipin (MLCL), the precursor of mature CL, and a decrease in mature CL itself. CL is a hallmark phospholipid of mitochondrial membranes, highly enriched in the inner mitochondrial membrane (IMM). It is not only important for the formation of the cristae structures, but also for the function of different protein complexes associated with the mitochondrial membrane. Reduced levels of mature CL cause remodeling of the respiratory chain supercomplexes, impaired respiration, defects in the Krebs cycle and a loss of mitochondrial calcium uniporter (MCU) protein. The defective Ca2+ handling causes impaired redox homeostasis and energy metabolism resulting in cellular arrhythmias and defective electrical conduction. In an uncompensated situation, blunting mitochondrial Ca2+ uptake provokes increased mitochondrial emission of H2O2 during workload transitions, related to oxidation of NADPH, which is required to regenerate anti-oxidative enzymes. However, in the hearts and cardiac myocytes of mice with a global knock-down of the Taz gene (Taz-KD), no increase in mitochondrial ROS was observed, suggesting that other metabolic pathways may have compensated for reduced Krebs cycle activation. The healthy heart produces most of its energy by consuming fatty acids. In this study, the fatty acid uptake into mitochondria and their further degradation was investigated, which showed a switch of the metabolism in general in the Taz-KD mouse model. In vivo studies revealed an increase of glucose uptake into the heart and decreased fatty acid uptake and oxidation. Disturbed energy conversion resulted in activation of retrograde signaling pathways, implicating overall changes in the cell metabolism. Upregulated integrated stress response (ISR) was confirmed by increased levels of the downstream target, i.e., the activating transcription factor 4 (ATF4). A Tafazzin knockout mouse embryonal fibroblast cell model (TazKO) was used to inhibit the ISR using siRNA transfection or pharmaceutical inhibition. This verified the central role of II the ISR in regulating the metabolism in BTHS. Moreover, an increased metabolic flux into glutathione biosynthesis was observed, which supports redox homeostasis. In vivo PET-CT scans depicted elevated activity of the xCT system in the BTHS mouse heart, which transports essential amino acids for the biosynthesis of glutathione precursors. Furthermore, the stress induced signaling pathway also affected the glutamate metabolism, which fuels into the Krebs cycle via -ketoglutarate and therefore supports energy converting pathways. In summary, this thesis provides novel insights into the energy metabolism and redox homeostasis in Barth syndrome cardiomyopathy and its regulation by the integrated stress response, which plays a central role in the metabolic alterations. The aim of the thesis was to improve the understanding of these metabolic changes and to identify novel targets, which can provide new possibilities for therapeutic intervention in Barth syndrome.}, subject = {Herzmuskelkrankheit}, language = {en} } @phdthesis{WeigelverhHoffmann2024, author = {Weigel [verh. Hoffmann], Mathis Leonard}, title = {Thrombozytenfunktionsanalyse als potenzielles Instrument zur Fr{\"u}herkennung von Sepsis}, doi = {10.25972/OPUS-35819}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-358193}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Sepsis ist ein h{\"a}ufiges und akut lebensbedrohliches Syndrom, das eine Organfunktionsst{\"o}rung in Folge einer dysregulierten Immunantwort auf eine Infektion beschreibt. Eine fr{\"u}hzeitige Diagnosestellung und Therapieeinleitung sind von zentraler Bedeutung f{\"u}r das {\"U}berleben der Patient:innen. In einer Pilotstudie konnte unsere Forschungsgruppe mittels Durchflusszytometrie eine ausgepr{\"a}gte Hyporeaktivit{\"a}t der Thrombozyten bei Sepsis nachweisen, die einen potenziell neuen Biomarker zur Sepsis-Fr{\"u}herkennung darstellt. Zur Evaluation des Ausmaßes und Entstehungszeitpunktes der detektierten Thrombozytenfunktionsst{\"o}rung wurden im Rahmen der vorliegenden Arbeit zus{\"a}tzlich zu Patient:innen mit Sepsis (SOFA-Score ≥ 2; n=13) auch hospitalisierte Patient:innen mit einer Infektion ohne Sepsis (SOFA-Score < 2; n=12) rekrutiert. Beide Kohorten wurden zu zwei Zeitpunkten (t1: <24h; t2: Tag 5-7) im Krankheitsverlauf mittels Durchflusszytometrie und PFA-200 untersucht und mit einer gesunden Kontrollgruppe (n=28) verglichen. Ph{\"a}notypische Auff{\"a}lligkeiten der Thrombozyten bei Sepsis umfassten: (i) eine ver{\"a}nderte Expression verschiedener Untereinheiten des GPIb-IX-V-Rezeptorkomplexes, die auf ein verst{\"a}rktes Rezeptor-Shedding hindeutet; (ii) ein ausgepr{\"a}gtes Mepacrin-Beladungsdefizit, das auf eine zunehmend reduzierte Anzahl von δ-Granula entlang des Infektion-Sepsis Kontinuums hinweist; (iii) eine Reduktion endst{\"a}ndig gebundener Sialins{\"a}ure im Sinne einer verst{\"a}rkten Desialylierung. Die funktionelle Analyse der Thrombozyten bei Sepsis ergab bei durchflusszytometrischer Messung der Integrin αIIbβ3-Aktivierung (PAC-1-Bindung) eine ausgepr{\"a}gte generalisierte Hyporeaktivit{\"a}t gegen{\"u}ber multiplen Agonisten, die abgeschw{\"a}cht bereits bei Infektion nachweisbar war und gem{\"a}ß ROC-Analysen gut zwischen Infektion und Sepsis diskriminierte (AUC >0.80 f{\"u}r alle Agonisten). Im Gegensatz dazu zeigten Thrombozyten bei Sepsis und Analyse mittels PFA-200 unter Einfluss physiologischer Scherkr{\"a}fte eine normale bis gar beschleunigte Aggregation. Die Reaktivit{\"a}tsmessung von Thrombozyten mittels Durchflusszytometrie stellt weiterhin einen vielversprechenden Biomarker f{\"u}r die Sepsis-Fr{\"u}herkennung dar. F{\"u}r weitere Schlussfolgerungen ist jedoch eine gr{\"o}ßere Kohorte erforderlich. In nachfolgenden Untersuchungen sollten zudem mechanistische Ursachen der beschriebenen ph{\"a}notypischen und funktionellen Auff{\"a}lligkeiten von Thrombozyten bei Infektion und Sepsis z.B. mittels Koinkubationsexperimenten untersucht werden.}, subject = {Sepsis}, language = {de} } @phdthesis{Neagoe2024, author = {Neagoe, Raluca Alexandra Iulia}, title = {Development of techniques for studying the platelet glycoprotein receptors GPVI and GPIb localisation and signalling}, doi = {10.25972/OPUS-31306}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313064}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Platelets play an important role in haemostasis by mediating blood clotting at sites of blood vessel damage. Platelets, also participate in pathological conditions including thrombosis and inflammation. Upon vessel damage, two glycoprotein receptors, the GPIb-IX-V complex and GPVI, play important roles in platelet capture and activation. GPIb-IX-V binds to von Willebrand factor and GPVI to collagen. This initiates a signalling cascade resulting in platelet shape change and spreading, which is dependent on the actin cytoskeleton. This thesis aimed to develop and implement different super-resolution microscopy techniques to gain a deeper understanding of the conformation and location of these receptors in the platelet plasma membrane, and to provide insights into their signalling pathways. We suggest direct stochastic optical reconstruction microscopy (dSTORM) and structured illumination microscopy (SIM) as the best candidates for imaging single platelets, whereas expansion microscopy (ExM) is ideal for imaging platelets aggregates. Furthermore, we highlighted the role of the actin cytoskeleton, through Rac in GPVI signalling pathway. Inhibition of Rac, with EHT1864 in human platelets induced GPVI and GPV, but not GPIbα shedding. Furthermore, EHT1864 treatment did not change GPVI dimerisation or clustering, however, it decreased phospholipase Cγ2 phosphorylation levels, in human, but not murine platelets, highlighting interspecies differences. In summary, this PhD thesis demonstrates that; 1) Rac alters GPVI signalling pathway in human but not mouse platelets; 2) our newly developed ExM protocol can be used to image platelet aggregates labelled with F(ab') fragments}, subject = {Platelet-Membranglykoprotein p62}, language = {en} } @phdthesis{Miller2024, author = {Miller, Kirill}, title = {Untersuchung von Nanostrukturen basierend auf LaAlO\(_3\)/SrTiO\(_3\) f{\"u}r Anwendungen in nicht von-Neumann-Rechnerarchitekturen}, doi = {10.25972/OPUS-35472}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-354724}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Die Dissertation besch{\"a}ftigt sich mit der Analyse von oxidischen Nanostrukturen. Die Grundlage der Bauelemente stellt dabei die LaAlO3/SrTiO3-Heterostruktur dar. Hierbei entsteht an der Grenzfl{\"a}che beider {\"U}bergangsmetalloxide ein quasi zweidimensionales Elektronengas, welches wiederum eine F{\"u}lle von beachtlichen Eigenschaften und Charakteristika zeigt. Mithilfe lithographischer Verfahren wurden zwei unterschiedliche Bauelemente verwirklicht. Dabei handelt es sich einerseits um einen planaren Nanodraht mit lateralen Gates, welcher auf der Probenoberfl{\"a}che prozessiert wurde und eine bemerkenswerte Trialit{\"a}t aufweist. Dieses Bauelement kann unter anderem als ein herk{\"o}mmlicher Feldeffekttransistor agieren, wobei der Ladungstransport durch die lateral angelegte Spannung manipuliert wird. Zus{\"a}tzlich konnten auch Speichereigenschaften beobachtet werden, sodass das gesamte Bauelement als ein sogenannter Memristor fungieren kann. In diesem Fall h{\"a}ngt der Ladungstransport von der Elektronenakkumulation auf den lateralen potentialfreien Gates ab. Die Memristanz des Nanodrahts l{\"a}sst sich unter anderem durch Lichtleistungen im Nanowattbereich und mithilfe von kurzen Spannungspulsen ver{\"a}ndern. Dar{\"u}ber hinaus kann die Elektronenakkumulation auch in Form einer memkapazitiven Charakteristik beobachtet werden. Neben dem Nanodraht wurde auch eine Kreuzstruktur, die eine erg{\"a}nzende ferromagnetischen Elektrode beinhaltet, realisiert. Mit diesem neuartigen Bauteil wird die Umwandlung zwischen Spin- und Ladungsstr{\"o}men innerhalb der nanoskaligen Struktur untersucht. Hierbei wird die starke Spin-Bahn-Kopplung im quasi zweidimensionalen Elektronengas ausgenutzt.}, subject = {Memristor}, language = {de} } @phdthesis{Knorr2024, author = {Knorr, Susanne}, title = {Pathophysiology of early-onset isolated dystonia in a DYT-TOR1A rat model with trauma-induced dystonia-like movements}, doi = {10.25972/OPUS-20609}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-206096}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Early-onset torsion dystonia (DYT-TOR1A, DYT1) is an inherited hyperkinetic movement disorder caused by a mutation of the TOR1A gene encoding the torsinA protein. DYT-TOR1A is characterized as a network disorder of the central nervous system (CNS), including predominantly the cortico-basal ganglia-thalamo-cortical loop resulting in a severe generalized dystonic phenotype. The pathophysiology of DYTTOR1A is not fully understood. Molecular levels up to large-scale network levels of the CNS are suggested to be affected in the pathophysiology of DYT-TOR1A. The reduced penetrance of 30\% - 40\% indicates a gene-environmental interaction, hypothesized as "second hit". The lack of appropriate and phenotypic DYT-TOR1A animal models encouraged us to verify the "second hit" hypothesis through a unilateral peripheral nerve trauma of the sciatic nerve in a transgenic asymptomatic DYT-TOR1A rat model (∆ETorA), overexpressing the human mutated torsinA protein. In a multiscale approach, this animal model was characterized phenotypically and pathophysiologically. Nerve-injured ∆ETorA rats revealed dystonia-like movements (DLM) with a partially generalized phenotype. A physiomarker of human dystonia, describing increased theta oscillation in the globus pallidus internus (GPi), was found in the entopeduncular nucleus (EP), the rodent equivalent to the human GPi, of nerve-injured ∆ETorA rats. Altered oscillation patterns were also observed in the primary motor cortex. Highfrequency stimulation (HFS) of the EP reduced DLM and modulated altered oscillatory activity in the EP and primary motor cortex in nerve-injured ∆ETorA rats. Moreover, the dopaminergic system in ∆ETorA rats demonstrated a significant increased striatal dopamine release and dopamine turnover. Whole transcriptome analysis revealed differentially expressed genes of the circadian clock and the energy metabolism, thereby pointing towards novel, putative pathways in the pathophysiology of DYTTOR1A dystonia. In summary, peripheral nerve trauma can trigger DLM in genetically predisposed asymptomatic ΔETorA rats leading to neurobiological alteration in the central motor network on multiple levels and thereby supporting the "second hit" hypothesis. This novel symptomatic DYT-TOR1A rat model, based on a DYT-TOR1A genetic background, may prove as a valuable chance for DYT-TOR1A dystonia, to further investigate the pathomechanism in more detail and to establish new treatment strategies.}, subject = {Dystonie}, language = {en} } @phdthesis{Koenig2024, author = {K{\"o}nig, Sebastian Thomas}, title = {Temperature-driven assembly processes of Orthoptera communities: Lessons on diversity, species traits, feeding interactions, and associated faecal microorganisms from elevational gradients in Southern Germany (Berchtesgaden Alps)}, doi = {10.25972/OPUS-35460}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-354608}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Chapter I: Introduction Temperature is a major driver of biodiversity and abundance patterns on our planet, which becomes particularly relevant facing the entanglement of an imminent biodiversity and climate crisis. Climate shapes the composition of species assemblages either directly via abiotic filtering mechanisms or indirectly through alterations in biotic interactions. Insects - integral elements of Earth's ecosystems - are affected by climatic variation such as warming, yet responses vary among species. While species' traits, antagonistic biotic interactions, and even species' microbial mutualists may determine temperature-dependent assembly processes, the lion's share of these complex relationships remains poorly understood due to methodological constraints. Mountains, recognized as hotspots of diversity and threatened by rapidly changing climatic conditions, can serve as natural experimental settings to study the response of insect assemblages and their trophic interactions to temperature variation, instrumentalizing the high regional heterogeneity of micro- and macroclimate. With this thesis, we aim to enhance our mechanistic understanding of temperature-driven assembly processes within insect communities, exemplified by Orthoptera, that are significant herbivores in temperate mountain grassland ecosystems. Therefore, we combined field surveys of Orthoptera assemblages on grassland sites with molecular tools for foodweb reconstruction, primarily leveraging the elevational gradients offered by the complex topography within the Berchtesgaden Alpine region (Bavaria, Germany) as surrogate for temperature variation (space-for-time substitution approach). In this framework, we studied the effects of temperature variation on (1) species richness, abundance, community composition, and interspecific as well as intraspecific trait patterns, (2) ecological feeding specialisation, and (3) previously neglected links to microbial associates found in the faeces. Chapter II: Temperature-driven assembly processes Climate varies at multiple scales. Since microclimate is often overlooked, we assessed effects of local temperature deviations on species and trait compositions of insect communities along macroclimatic temperature gradients in Chapter II. Therefore, we employed joint species distribution modelling to explore how traits drive variation in the climatic niches of Orthoptera species at grassland sites characterized by contrasting micro- and macroclimatic conditions. Our findings revealed two key insights: (1) additive effects of micro- and macroclimate on the diversity, but (2) interactive effects on the abundance of several species, resulting in turnover and indicating that species possess narrower climatic niches than their elevational distributions might imply. This chapter suggests positive effects of warming on Orthoptera, but also highlights that the interplay of macro- and microclimate plays a pivotal role in structuring insect communities. Thus, it underscores the importance of considering both elements when predicting the responses of species to climate change. Additionally, this chapter revealed inter- and intraspecific effects of traits on the niches and distribution of species. Chapter III: Dietary specialisation along climatic gradients A crucial trait linked to the position of climatic niches is dietary specialisation. According to the 'altitudinal niche-breadth hypothesis', species of high-elevation habitats should be less specialized compared to their low-elevation counterparts. However, empirical evidence on shifts in specialization is scarce for generalist insect herbivores and existing studies often fail to control for the phylogeny and abundance of interaction partners. In Chapter III, we used a combination of field observations and amplicon sequencing to reconstruct dietary relationships between Orthoptera and plants along an extensive temperature gradient. We did not find close but flexible links between individual grasshopper and plant taxa in space. While interaction network specialisation increased with temperature, the corrected dietary specialisation pattern peaked at intermediate elevations on assemblage level. These nuanced findings demonstrate that (1) resource availability, (2) phylogenetic relationships, and (3) climate can affect empirical foodwebs intra- and interspecifically and, hence, the dietary specialisation of herbivorous insects. In this context, we discuss that the underlying mechanisms involved in shaping the specialisation of herbivore assemblages may switch along temperature clines. Chapter IV: Links between faecal microbe communities, feeding habits, and climate Since gut microbes affect the fitness and digestion of insects, studying their diversity could provide novel insights into specialisation patterns. However, their association with insect hosts that differ in feeding habits and specialisation has never been investigated along elevational climatic gradients. In Chapter IV, we utilized the dietary information gathered in Chapter III to characterize links between insects with distinct feeding behaviour and the microbial communities present in their faeces, using amplicon sequencing. Both, feeding and climate affected the bacterial communities. However, the large overlap of microbes at site level suggests that common bacteria are acquired from the shared feeding environment, such as the plants consumed by the insects. These findings emphasize the influence of a broader environmental context on the composition of insect gut microbial communities. Chapter V: Discussion \& Conclusions Cumulatively, the sections of this dissertation provide support for the hypothesis that climatic conditions play a role in shaping plant-herbivore systems. The detected variation of taxonomic and functional compositions contributes to our understanding of assembly processes and resulting diversity patterns within Orthoptera communities, shedding light on the mechanisms that structure their trophic interactions in diverse climates. The combined results presented suggest that a warmer climate could foster an increase of Orthoptera species richness in Central European semi-natural grasslands, also because the weak links observed between insect herbivores and plants are unlikely to limit decoupled range shifts. However, the restructuring of Orthoptera communities in response to warmer temperatures depends on species' traits such as moisture preferences or phenology. Notably, we were able to demonstrate a crucial role of microclimate for many species, partly unravelling narrower climatic niches than their elevational ranges suggest. We found evidence that not only Orthoptera community composition, specialisation, and traits varied along elevational gradients, but even microbial communities in the faeces of Orthoptera changed, which is a novel finding. This complex restructuring and reassembly of communities, coupled with the nonlinear specialisation of trophic interactions and a high diversity of associated bacteria, emphasize our currently incomplete comprehension of how ecosystems will develop under future climatic conditions, demanding caution in making simplified predictions for biodiversity change under climate warming. Since these predictions may benefit from including biotic interactions and both, micro- and macroclimate based on our findings, conservation authorities and practitioners must not neglect improving microclimatic conditions to ensure local survival of a diverse set of threatened and demanding species. In this context, mountains can play a pivotal role for biodiversity conservation since these offer heterogeneous microclimatic conditions in proximity that can be utilized by species with distinct niches.}, subject = {Heuschrecken}, language = {en} } @phdthesis{Wenderoth2024, author = {Wenderoth, Sarah}, title = {Synthesis and characterization of shear stress indicator supraparticles}, doi = {10.25972/OPUS-35281}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-352819}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The detection of smallest mechanical loads plays an increasingly important role in many areas of advancing automation and manufacturing technology, but also in everyday life. In this doctoral thesis, various microparticle systems were developed that are able to indicate mechanical shear stress via simple mechanisms. Using a toolbox approach, these systems can be spray-dried from various nanoscale primary particles (silica and iron oxide) to micrometer-sized units, so-called supraparticles. By varying the different building blocks and in combination with different dyes, a new class of mechanochromic shear stress indicators was developed by constructing hierarchically structured core-shell supraparticles that can indicate mechanical stress via an easily detectable color change. Three different mechanisms can be distinguished. If a signal becomes visible only by a mechanical load, it is a turn-on indicator. In the opposite case, the turn-off indicator, the signal is switched off by a mechanical load. In the third mechanism, the color-change indicator, the color changes as a result of a mechanical load. In principle, these indicators can be used in two different ways. First, they can be incorporated into a coating as an additive. These coatings can be applied to a wide range of products, including food packaging, medical devices, and generally any sensitive surface where mechanical stress, such as scratches, is difficult to detect but can have serious consequences. Second, these shear stress indicators can also be used directly in powder form and for example then applied in 3D-printing or in ball mills. A total of six different shear stress indicators were developed, three of which were used as additives in coatings and three were applied in powder form. Depending on their composition, these indicators were readout by fluorescence, UV-Vis or Magnetic Particle Spectroscopy. The development of these novel shear stress indicator supraparticles were successfully combined molecular chemistry with the world of nano-objects to develop macroscopic systems that can enable smart and communicating materials to indicate mechanical stress in a variety of applications.}, subject = {Nanopartikel}, language = {en} }