@article{GuneschHoffmannKiermeieretal.2020, author = {Gunesch, Sandra and Hoffmann, Matthias and Kiermeier, Carolina and Fischer, Wolfgang and Pinto, Antonio F. M. and Maurice, Tangui and Maher, Pamela and Decker, Michael}, title = {7-O-Esters of taxifolin with pronounced and overadditive effects in neuroprotection, anti-neuroinflammation, and amelioration of short-term memory impairment in vivo}, series = {Redox Biology}, volume = {29}, journal = {Redox Biology}, doi = {10.1016/j.redox.2019.101378}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202718}, pages = {101378}, year = {2020}, abstract = {Alzheimer's disease (AD) is a multifactorial disease and the most common form of dementia. There are no treatments to cure, prevent or slow down the progression of the disease. Natural products hold considerable interest for the development of preventive neuroprotectants to treat neurodegenerative disorders like AD, due to their low toxicity and general beneficial effects on human health with their anti-inflammatory and antioxidant features. In this work we describe regioselective synthesis of 7-O-ester hybrids of the flavonoid taxifolin with the phenolic acids cinnamic and ferulic acid, namely 7-O-cinnamoyltaxifolin and 7-O-feruloyltaxifolin. The compounds show pronounced overadditive neuroprotective effects against oxytosis, ferroptosis and ATP depletion in the murine hippocampal neuron HT22 cell model. Furthermore, 7-O-cinnamoyltaxifolin and 7-O-feruloyltaxifolin reduced LPS-induced neuroinflammation in BV-2 microglia cells as assessed by effects on the levels of NO, IL6 and TNFα. In all in vitro assays the 7-O-esters of taxifolin and ferulic or cinnamic acid showed strong overadditive activity, significantly exceeding the effects of the individual components and the equimolar mixtures thereof, which were almost inactive in all of the assays at the tested concentrations. In vivo studies confirmed this overadditive effect. Treatment of an AD mouse model based on the injection of oligomerized Aβ\(_{25-35}\) peptide into the brain to cause neurotoxicity and subsequently memory deficits with 7-O-cinnamoyltaxifolin or 7-O-feruloyltaxifolin resulted in improved performance in an assay for short-term memory as compared to vehicle and mice treated with the respective equimolar mixtures. These results highlight the benefits of natural product hybrids as a novel compound class with potential use for drug discovery in neurodegenerative diseases due to their pharmacological profile that is distinct from the individual natural components.}, language = {en} } @article{CataldiRaschigGutmannetal.2023, author = {Cataldi, Eleonora and Raschig, Martina and Gutmann, Marcus and Geppert, Patrick T. and Ruopp, Matthias and Schock, Marvin and Gerwe, Hubert and Bertermann, R{\"u}diger and Meinel, Lorenz and Finze, Maik and Nowak-Kr{\´o}l, Agnieszka and Decker, Michael and L{\"u}hmann, Tessa}, title = {Amber Light Control of Peptide Secondary Structure by a Perfluoroaromatic Azobenzene Photoswitch}, series = {ChemBioChem}, volume = {24}, journal = {ChemBioChem}, number = {5}, doi = {10.1002/cbic.202200570}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312480}, year = {2023}, abstract = {The incorporation of photoswitches into the molecular structure of peptides and proteins enables their dynamic photocontrol in complex biological systems. Here, a perfluorinated azobenzene derivative triggered by amber light was site-specifically conjugated to cysteines in a helical peptide by perfluoroarylation chemistry. In response to the photoisomerization (trans→cis) of the conjugated azobenzene with amber light, the secondary structure of the peptide was modulated from a disorganized into an amphiphilic helical structure.}, language = {en} } @article{HofmannGinexEspargaroetal.2021, author = {Hofmann, Julian and Ginex, Tiziana and Espargar{\´o}, Alba and Scheiner, Matthias and Gunesch, Sandra and Arag{\´o}, Marc and Stigloher, Christian and Sabat{\´e}, Raimon and Luque, F. Javier and Decker, Michael}, title = {Azobioisosteres of Curcumin with Pronounced Activity against Amyloid Aggregation, Intracellular Oxidative Stress, and Neuroinflammation}, series = {Chemistry - A European Journal}, volume = {27}, journal = {Chemistry - A European Journal}, number = {19}, doi = {10.1002/chem.202005263}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238988}, pages = {6015 -- 6027}, year = {2021}, abstract = {Many (poly-)phenolic natural products, for example, curcumin and taxifolin, have been studied for their activity against specific hallmarks of neurodegeneration, such as amyloid-β 42 (Aβ42) aggregation and neuroinflammation. Due to their drawbacks, arising from poor pharmacokinetics, rapid metabolism, and even instability in aqueous medium, the biological activity of azobenzene compounds carrying a pharmacophoric catechol group, which have been designed as bioisoteres of curcumin has been examined. Molecular simulations reveal the ability of these compounds to form a hydrophobic cluster with Aβ42, which adopts different folds, affecting the propensity to populate fibril-like conformations. Furthermore, the curcumin bioisosteres exceeded the parent compound in activity against Aβ42 aggregation inhibition, glutamate-induced intracellular oxidative stress in HT22 cells, and neuroinflammation in microglial BV-2 cells. The most active compound prevented apoptosis of HT22 cells at a concentration of 2.5 μm (83 \% cell survival), whereas curcumin only showed very low protection at 10 μm (21 \% cell survival).}, language = {en} } @article{DrakopoulosDecker2020, author = {Drakopoulos, Antonios and Decker, Michael}, title = {Development and Biological Applications of Fluorescent Opioid Ligands}, series = {ChemPlusChem}, volume = {85}, journal = {ChemPlusChem}, number = {6}, doi = {10.1002/cplu.202000212}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216068}, pages = {1354 -- 1364}, year = {2020}, abstract = {Opioid receptors (ORs) are classified among the oldest and best investigated drug targets due to their fundamental role in the treatment of pain and related disorders. ORs are divided in three conventional subtypes (μ, κ, δ) and the non-classical nocicepetin receptor. All ORs are family A G protein-coupled receptors (GPCRs), and are located on the cell surface. Modern biophysical methods use light to investigate physiological processes at organismal, cellular and subcellular level. Many of these methods rely on fluorescent ligands, thus highlighting their importance. This review addresses the advancements in the development of opioid fluorescent ligands and their use in biological, pharmacological and imaging applications.}, language = {en} } @article{SawatzkyDrakopoulosRoelzetal.2016, author = {Sawatzky, Edgar and Drakopoulos, Antonios and R{\"o}lz, Martin and Sotriffer, Christoph and Engels, Bernd and Decker, Michael}, title = {Experimental and theoretical investigations into the stability of cyclic aminals}, series = {Beilstein Journal of Organic Chemistry}, volume = {12}, journal = {Beilstein Journal of Organic Chemistry}, doi = {10.3762/bjoc.12.221}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160976}, pages = {2280-2292}, year = {2016}, abstract = {Background: Cyclic aminals are core features of natural products, drug molecules and important synthetic intermediates. Despite their relevance, systematic investigations into their stability towards hydrolysis depending on the pH value are lacking. Results: A set of cyclic aminals was synthesized and their stability quantified by kinetic measurements. Steric and electronic effects were investigated by choosing appropriate groups. Both molecular mechanics (MM) and density functional theory (DFT) based studies were applied to support and explain the results obtained. Rapid decomposition is observed in acidic aqueous media for all cyclic aminals which occurs as a reversible reaction. Electronic effects do not seem relevant with regard to stability, but the magnitude of the conformational energy of the ring system and pK a values of the N-3 nitrogen atom. Conclusion: Cyclic aminals are stable compounds when not exposed to acidic media and their stability is mainly dependent on the conformational energy of the ring system. Therefore, for the preparation and work-up of these valuable synthetic intermediates and natural products, appropriate conditions have to be chosen and for application as drug molecules their sensitivity towards hydrolysis has to be taken into account.}, language = {en} } @article{ChenWernerKoshinoetal.2022, author = {Chen, Xinyu and Werner, Rudolf A. and Koshino, Kazuhiro and Nose, Naoko and M{\"u}hlig, Saskia and Rowe, Steven P. and Pomper, Martin G. and Lapa, Constantin and Decker, Michael and Higuchi, Takahiro}, title = {Molecular Imaging-Derived Biomarker of Cardiac Nerve Integrity - Introducing High NET Affinity PET Probe \(^{18}\)F-AF78}, series = {Theranostics}, volume = {12}, journal = {Theranostics}, number = {9}, doi = {10.7150/thno.63205}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300685}, pages = {4446 -- 4458}, year = {2022}, abstract = {Background: Radiolabeled agents that are substrates for the norepinephrine transporter (NET) can be used to quantify cardiac sympathetic nervous conditions and have been demonstrated to identify high-risk congestive heart failure (HF) patients prone to arrhythmic events. We aimed to fully characterize the kinetic profile of the novel \(^{18}\)F-labeled NET probe AF78 for PET imaging of the cardiac sympathetic nervous system (SNS) among various species. Methods: \(^{18}\)F-AF78 was compared to norepinephrine (NE) and established SNS radiotracers by employing in vitro cell assays, followed by an in vivo PET imaging approach with healthy rats, rabbits and nonhuman primates (NHPs). Additionally, chase protocols were performed in NHPs with NET inhibitor desipramine (DMI) and the NE releasing stimulator tyramine (TYR) to investigate retention kinetics in cardiac SNS. Results: Relative to other SNS radiotracers, 18F-AF78 showed higher transport affinity via NET in a cell-based competitive uptake assay (IC\(^{50}\) 0.42 ± 0.14 µM), almost identical to that of NE (IC\(^{50}\), 0.50 ± 0.16 µM, n.s.). In rabbits and NHPs, initial cardiac uptake was significantly reduced by NET inhibition. Furthermore, cardiac tracer retention was not affected by a DMI chase protocol but was markedly reduced by intermittent TYR chase, thereby suggesting that \(^{18}\)F-AF78 is stored and can be released via the synaptic vesicular turnover process. Computational modeling hypothesized the formation of a T-shaped π-π stacking at the binding site, suggesting a rationale for the high affinity of \(^{18}\)F-AF78. Conclusion: \(^{18}\)F-AF78 demonstrated high in vitro NET affinity and advantageous in vivo radiotracer kinetics across various species, indicating that \(^{18}\)F-AF78 is an SNS imaging agent with strong potential to guide specific interventions in cardiovascular medicine.}, language = {en} } @article{ChenHiranoWerneretal.2018, author = {Chen, Xinyu and Hirano, Mitsuru and Werner, Rudolf A. and Decker, Michael and Higuchi, Takahiro}, title = {Novel \(^{18}\)F-labeled PET Imaging Agent FV45 targeting the Renin-Angiotensin System}, series = {ACS Omega}, volume = {3}, journal = {ACS Omega}, number = {9}, issn = {2470-1343}, doi = {10.1021/acsomega.8b01885}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167144}, pages = {10460-10470}, year = {2018}, abstract = {Renin-angiotensin system (RAS) plays an important role in the regulation of blood pressure and hormonal balance. Using positron emission tomography (PET) technology, it is possible to monitor the physiological and pathological distribution of angiotensin II type 1 receptors (AT\(_1\)), which reflects the functionality of RAS. A new \(^{18}\)F-labeled PET tracer derived from the clinically used AT\(_1\) antagonist valsartan showing the least possible chemical alteration from the valsartan structure has been designed and synthesized with several strategies, which can be applied for the syntheses of further derivatives. Radioligand binding study showed that the cold reference FV45 (K\(_i\) 14.6 nM) has almost equivalent binding affinity as its lead valsartan (K\(_i\) 11.8 nM) and angiotensin II (K\(_i\) 1.7 nM). Successful radiolabeling of FV45 in a one-pot radiofluorination followed by the deprotection procedure with 21.8 ± 8.5\% radiochemical yield and >99\% radiochemical purity (n = 5) enabled a distribution study in rats and opened a path to straightforward large-scale production. A fast and clear kidney uptake could be observed, and this renal uptake could be selectively blocked by pretreatment with AT\(_1\)-selective antagonist valsartan. Overall, as the first \(^{18}\)F-labeled PET tracer based on a derivation from clinically used drug valsartan with almost identical chemical structure, [\(^{18}\)F]FV45 will be a new tool for assessing the RAS function by visualizing AT\(_i\) receptor distributions and providing further information regarding cardiovascular system malfunction as well as possible applications in inflammation research and cancer diagnosis.}, subject = {Positronen-Emissions-Tomografie}, language = {en} } @article{ScheinerSinkSpatzetal.2021, author = {Scheiner, Matthias and Sink, Alexandra and Spatz, Philipp and Endres, Erik and Decker, Michael}, title = {Photopharmacology on Acetylcholinesterase: Novel Photoswitchable Inhibitors with Improved Pharmacological Profiles}, series = {ChemPhotoChem}, volume = {5}, journal = {ChemPhotoChem}, number = {2}, doi = {10.1002/cptc.202000119}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218445}, pages = {149 -- 159}, year = {2021}, abstract = {Considerable effort has previously been invested in a light-controlled inhibition of the enzyme acetylcholinesterase (AChE). We found that a novel azobenzene-based bistacrine AChE inhibitor switched faster than the known dithienylethene based bistacrine and inverted the photo-controlled interactions of the photoisomers compared to its dithienylethene congener. Furthermore, we have optimized a previously described light-controlled tacrine-based AChE inhibitor. Isomerization upon irradiation with UV light of the novel inhibitor was observed in aqueous medium and showed no fatigue over several cycles. The cis-enriched form showed an 8.4-fold higher inhibition of hAChE compared with its trans-enriched form and was about 30-fold more active than the reference compound tacrine with a single-digit nanomolar inhibition. We went beyond proof-of-concept to discover photoswitchable AChE inhibitors with pharmacologically desirable nanomolar inhibition, "cis-on" effect, and pronounces differences between the photoisomers.}, language = {en} } @article{ChenWernerJavadietal.2015, author = {Chen, Xinyu and Werner, Rudolf A. and Javadi, Mehrbod S. and Maya, Yoshifumi and Decker, Michael and Lapa, Constantin and Herrmann, Ken and Higuchi, Takahiro}, title = {Radionuclide imaging of neurohormonal system of the heart}, series = {Theranostics}, volume = {5}, journal = {Theranostics}, number = {6}, doi = {10.7150/thno.10900}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149205}, pages = {545-558}, year = {2015}, abstract = {Heart failure is one of the growing causes of death especially in developed countries due to longer life expectancy. Although many pharmacological and instrumental therapeutic approaches have been introduced for prevention and treatment of heart failure, there are still limitations and challenges. Nuclear cardiology has experienced rapid growth in the last few decades, in particular the application of single photon emission computed tomography (SPECT) and positron emission tomography (PET), which allow non-invasive functional assessment of cardiac condition including neurohormonal systems involved in heart failure; its application has dramatically improved the capacity for fundamental research and clinical diagnosis. In this article, we review the current status of applying radionuclide technology in non-invasive imaging of neurohormonal system in the heart, especially focusing on the tracers that are currently available. A short discussion about disadvantages and perspectives is also included.}, language = {en} } @article{TutovChenWerneretal.2023, author = {Tutov, Anna and Chen, Xinyu and Werner, Rudolf A. and M{\"u}hlig, Saskia and Zimmermann, Thomas and Nose, Naoko and Koshino, Kazuhiro and Lapa, Constantin and Decker, Michael and Higuchi, Takahiro}, title = {Rationalizing the binding modes of PET radiotracers targeting the norepinephrine transporter}, series = {Pharmaceutics}, volume = {15}, journal = {Pharmaceutics}, number = {2}, issn = {1999-4923}, doi = {10.3390/pharmaceutics15020690}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303949}, year = {2023}, abstract = {Purpose: A new PET radiotracer \(^{18}\)F-AF78 showing great potential for clinical application has been reported recently. It belongs to a new generation of phenethylguanidine-based norepinephrine transporter (NET)-targeting radiotracers. Although many efforts have been made to develop NET inhibitors as antidepressants, systemic investigations of the structure-activity relationships (SARs) of NET-targeting radiotracers have rarely been performed. Methods: Without changing the phenethylguanidine pharmacophore and 3-fluoropropyl moiety that is crucial for easy labeling, six new analogs of \(^{18}\)F-AF78 with different meta-substituents on the benzene-ring were synthesized and evaluated in a competitive cellular uptake assay and in in vivo animal experiments in rats. Computational modeling of these tracers was established to quantitatively rationalize the interaction between the radiotracers and NET. Results: Using non-radiolabeled reference compounds, a competitive cellular uptake assay showed a decrease in NET-transporting affinity from meta-fluorine to iodine (0.42 and 6.51 µM, respectively), with meta-OH being the least active (22.67 µM). Furthermore, in vivo animal studies with radioisotopes showed that heart-to-blood ratios agreed with the cellular experiments, with AF78(F) exhibiting the highest cardiac uptake. This result correlates positively with the electronegativity rather than the atomic radius of the meta-substituent. Computational modeling studies revealed a crucial influence of halogen substituents on the radiotracer-NET interaction, whereby a T-shaped π-π stacking interaction between the benzene-ring of the tracer and the amino acid residues surrounding the NET binding site made major contributions to the different affinities, in accordance with the pharmacological data. Conclusion: The SARs were characterized by in vitro and in vivo evaluation, and computational modeling quantitatively rationalized the interaction between radiotracers and the NET binding site. These findings pave the way for further evaluation in different species and underline the potential of AF78(F) for clinical application, e.g., cardiac innervation imaging or molecular imaging of neuroendocrine tumors.}, language = {en} }