@phdthesis{Endress2006, author = {Endress, Eva-Maria}, title = {M{\"o}gliche Rolle von Cystein-Resten in der dritten extrazellul{\"a}ren Schleife des humanen PTH-2 Rezeptors f{\"u}r dessen Ligandenspezifit{\"a}t}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-25488}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Der Mechanismus, welcher den GPCR eine Unterscheidung verschiedener Liganden erm{\"o}glicht, ist immer noch ungekl{\"a}rt. Der GPCR f{\"u}r PTH und PTHrP (=PTH1-R) bindet PTH und das strukturell recht unterschiedliche PTHrP. Beide Liganden aktivieren mit etwa vergleichbarer Potenz eben diesen PTH1-R, indem sie sowohl an die intrazellul{\"a}re AC als auch an die PLC ankoppeln. Ein vor einigen Jahren {\"u}berraschend kloniertes neues Mitglied der Sekretin/PTH/Calcitonin-Familie (= Familie B) der GPCR, der PTH2-R, antwortet jedoch nur nach Bindung von PTH bzw. TIP 39, nicht aber nach PTHrP, mit einem intrazellul{\"a}ren cAMP-Signal. Allerdings sind weder hPTH noch TIP39 in der Lage, eine intrazellul{\"a}re IP3-Antwort auszul{\"o}sen. Welche strukturellen Gegebenheiten des PTH2-Rezeptors erm{\"o}glichen diese effiziente Ligandendiskriminierung? Analysen der Rezeptor-Liganden-Interaktion und die Aufkl{\"a}rung dieses Komplexes sind ein Schl{\"u}sselelement im Design spezifischer Rezeptoragonisten und -antagonisten mit bedeutendem therapeutischen Potential. Eine hochkonservierte Eigenschaft aller Rezeptoren der Familie B der GPCR ist die Lokalisation von sechs extrazellul{\"a}ren Cysteinen, die sowohl zur Expression intakter Rezeptoren von N{\"o}ten sind als auch durch m{\"o}gliche Disulfidbr{\"u}ckenbildung untereinander einen entscheidenden Einfluss auf das Bindungsverhalten aus{\"u}ben. Die Hypothese der vorliegenden Arbeit ist, dass zwei Cysteine, pr{\"a}sent in der 3. Extrazellul{\"a}rschleife des PTH2-R, nicht aber in der des PTH1-R, dessen Ligandenspezifit{\"a}t bedingen. Tats{\"a}chlich f{\"u}hrte das Ausschalten eines entsprechenden Cysteins im Opossum-PTH2-R zu einem exprimierten Rezeptor, der PTHrP zu einem gewissen Grad binden und daraufhin auch den AC/cAMP-Signalweg aktivieren konnte. (184) Es liegt daher die Vermutung nahe, dass diese beiden Cysteine des PTH2-R entweder durch Disulfidbr{\"u}ckenbildung untereinander oder zu den restlichen Cysteinen in der extrazellul{\"a}ren Region die sterische Konfiguration der Rezeptoren und somit auch deren Bindungs- und Signalverhalten {\"a}ndern k{\"o}nnen. Auf diesen Ergebnissen und Annahmen basierend, war daher Gegenstand diesen Projekts zun{\"a}chst das Einf{\"u}gen verschiedener Punktmutationen in die cDNA des humanen PTH1-R. Es wurden Konstrukte konzipiert zur Einf{\"u}gung beider Cysteine einzeln (Ala426Cys und Tyr443Cys) oder kombiniert (Ala426Cys/Tyr443Cys). Nach Expression der drei mutierten Rezeptoren und beider Wildtyp-Rezeptoren war Ziel, das Ligandenbindungsverhalten und somit die Expression intakter Rezeptoren an der Zelloberfl{\"a}che zu untersuchen. Studien des Signalverhaltens bez{\"u}glich des AC/cAMP- und des PLC/IP3- Signalwegs, ebenso wie Internalisierungsassays strebten dann die vollst{\"a}ndige Charakterisierung der mutierten Rezeptoren an.}, subject = {Parathormon}, language = {de} } @phdthesis{Kober2012, author = {Kober, Franz-Xaver Wilhelm}, title = {Molecular insights into the protein disulfide isomerase family}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72144}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Upon synthesis, nascent polypeptide chains are subject to major rearrangements of their side chains to obtain an energetically more favorable conformation in a process called folding. About one third of all cellular proteins pass through the secretory pathway and undergo oxidative folding in the endoplasmic reticulum (ER). During oxidative folding, the conformational rearrangements are accompanied by the formation of disulfide bonds - covalent bonds between cysteine side chains that form upon oxidation. Protein disulfide isomerase (PDI) assists in the folding of substrates by catalyzing the oxidation of pairs of cysteine residues and the isomerization of disulfide bonds as well as by acting as chaperones. In addition to PDI itself, a family of related ER-resident proteins has formed. All PDI family members share the thioredoxin fold in at least one of their domains and exhibit a subset of the PDI activities. Despite many studies, the role of most PDI family members remains unclear. The project presented in this thesis was aimed to establish tools for the biochemical characterization of single members of the PDI family and their role in the folding process. A combination of fluorescence based assays was developed to selectively study single functions of PDI family members and relate their properties of either catalysis of oxidation or catalysis of isomerization or chaperone activity to the rest of the protein family. A binding assay using isothermal titration calorimetry (ITC) was established to complement the activity assays. Using ITC we could show for the first time that members of the PDI family can distinguish between folded and unfolded proteins selectively binding the latter. The unique information provided by this method also revealed a two-site binding of unfolded proteins by PDI itself. In addition to the functional characterization, experiments were conducted to further investigate the oligomeric state of PDI. We could show that the equilibrium between structurally different states of PDI is heavily influenced by the redox state of the protein and its environment. This new data could help to further our understanding of the interplay between oxidases like PDI and their regenerative enzymes like Ero1, which may be governed by structural changes in response to the change in redox status. Another structural approach was the screening of all investigated PDI family members for suitable crystallization conditions. As a result of this screening we could obtain protein crystals of human ERp27 and were able to solve the structure of this protein with X-ray crystallography. The structure gives insight into the mechanisms of substrate binding domains within the PDI family and helps to understand the interaction of ERp27 with the redox active ERp57. In collaboration with the group of Heike Hermanns we could further show the physiological importance of this interaction under oxidative stress. In conclusion, the project presented in this thesis provides novel tools for an extensive analysis of the activities of single PDI family members as well as a useful set of methods to characterize novel oxidoreductases and chaperones. The initial results obtained with the our novel methods are very promising. At the same time, the structural approach of this project could successfully solve the structure of a PDI family member and give information about the interplay within the PDI family.}, subject = {Biochemie}, language = {en} }