@phdthesis{Mahlmeister2023, author = {Mahlmeister, Bernhard}, title = {Twisted Rylene Bisimides for Organic Solar Cells and Strong Chiroptical Response in the Near Infrared}, doi = {10.25972/OPUS-34610}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-346106}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The chirality of the interlocked bay-arylated perylene motif is investigated upon its material prospect and the enhancement of its chiroptical response to the NIR spectral region. A considerable molecular library of inherently chiral perylene bisimides (PBIs) was utilized as acceptors in organic solar cells to provide decent device performances and insights into the structure-property relationship of PBI materials within a polymer blend. For the first time in the family of core-twisted PBIs, the effects of enantiopurity on the device performance was thoroughly investigated. The extraordinary structural sensitivity of CD spectroscopy served as crucial analytical tool to bridge the highly challenging gap between molecular properties and device analytics by proving the excitonic chirality of a helical PBI dimer. The chirality of this perylene motif could be further enhanced on a molecular level by both the expansion and the enhanced twisting of the π-scaffold to achieve a desirable strong chiroptical NIR response introducing a new family of twisted QBI-based nanoribbons. These achievements could be substantially further developed by expanding this molecular concept to a supramolecular level. The geometrically demanding supramolecular arrangement necessary for the efficient excitonic coupling was carefully encoded into the molecular design. Accordingly, the QBIs could form the first J-type aggregate constituting a fourfold-stranded superhelix of a rylene bisimide with strong excitonic chirality. Therefore, this thesis has highlighted the mutual corroboration of experimental and theoretical data from the molecular to the supramolecular level. It has demonstrated that for rylene bisimide dyes, the excitonic contribution to the overall chiroptical response can be designed and rationalized. This can help to pave the way for new organic functional materials to be used for chiral sensing or chiral organic light-emitting devices.}, subject = {Molek{\"u}l}, language = {en} } @article{NollKrauseBeuerleetal.2022, author = {Noll, Niklas and Krause, Ana-Maria and Beuerle, Florian and W{\"u}rthner, Frank}, title = {Enzyme-like water preorganization in a synthetic molecular cleft for homogeneous water oxidation catalysis}, series = {Nature Catalysis}, journal = {Nature Catalysis}, edition = {accepted version}, doi = {10.1038/s41929-022-00843-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-302897}, year = {2022}, abstract = {Inspired by the proficiency of natural enzymes, mimicking of nanoenvironments for precise substrate preorganisation is a promising strategy in catalyst design. However, artificial examples of enzyme-like activation of H\(_2\)O molecules for the challenging oxidative water splitting reaction are hardly explored. Here, we introduce a mononuclear Ru(bda) complex (M1, bda: 2,2'-bipyridine-6,6'-dicarboxylate) equipped with a bipyridine-functionalized ligand to preorganize H\(_2\)O molecules in front of the metal center as in enzymatic clefts. The confined pocket of M1 accelerates chemically driven water oxidation at pH 1 by facilitating a water nucleophilic attack pathway with a remarkable turnover frequency of 140 s\(^{-1}\) that is comparable to the oxygen-evolving complex of photosystem II. Single crystal X-ray analysis of M1 under catalytic conditions allowed the observation of a 7th H\(_2\)O ligand directly coordinated to a RuIII center. Via a well-defined hydrogen-bonding network, another H\(_2\)O substrate is preorganized for the crucial O-O bond formation via nucleophilic attack.}, language = {en} } @article{HechtLeowanawatGerlachetal.2020, author = {Hecht, Markus and Leowanawat, Pawaret and Gerlach, Tabea and Stepanenko, Vladimir and Stolte, Matthias and Lehmann, Matthias and W{\"u}rthner, Frank}, title = {Self-Sorting Supramolecular Polymerization: Helical and Lamellar Aggregates of Tetra-Bay-Acyloxy Perylene Bisimide}, series = {Angewandte Chemie International Edition}, volume = {59}, journal = {Angewandte Chemie International Edition}, number = {39}, doi = {10.1002/anie.202006744}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224586}, pages = {17084 -- 17090}, year = {2020}, abstract = {A new perylene bisimide (PBI), with a fluorescence quantum yield up to unity, self-assembles into two polymorphic supramolecular polymers. This PBI bears four solubilizing acyloxy substituents at the bay positions and is unsubstituted at the imide position, thereby allowing hydrogen-bond-directed self-assembly in nonpolar solvents. The formation of the polymorphs is controlled by the cooling rate of hot monomer solutions. They show distinctive absorption profiles and morphologies and can be isolated in different polymorphic liquid-crystalline states. The interchromophoric arrangement causing the spectral features was elucidated, revealing the formation of columnar and lamellar phases, which are formed by either homo- or heterochiral self-assembly, respectively, of the atropoenantiomeric PBIs. Kinetic studies reveal a narcissistic self-sorting process upon fast cooling, and that the transformation into the heterochiral (racemic) sheetlike self-assemblies proceeds by dissociation via the monomeric state.}, language = {en} } @article{RennerStolteWuerthner2020, author = {Renner, Rebecca and Stolte, Matthias and W{\"u}rthner, Frank}, title = {Self-Assembly of bowl-shaped naphthalimide-annulated corannulene}, series = {ChemistryOpen}, volume = {9}, journal = {ChemistryOpen}, number = {1}, doi = {10.1002/open.201900291}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204396}, pages = {32-39}, year = {2020}, abstract = {The self-assembly of a bowl-shaped naphthalimide-annulated corannulene of high solubility has been studied in a variety of solvents by NMR and UV/Vis spectroscopy. Evaluation by the anti-cooperative K\(_2\)-K model revealed the formation of supramolecular dimers of outstanding thermodynamic stability. Further structural proof for the almost exclusive formation of dimers over extended aggregates is demonstrated by atomic force microscopy (AFM) and diffusion ordered spectroscopy (DOSY) measurements as well as by theoretical calculations. Thus, herein we present the first report of a supramolecular dimer of an annulated corannulene derivative in solution and discuss its extraordinarily high thermodynamic stability with association constants up to > 10\(^6\)M\(^-\) \(^1\) in methylcyclohexane, which is comparable to the association constants given for planar phthalocyanine and perylene bisimide dyes.}, language = {en} } @phdthesis{Munzert2018, author = {Munzert, Stefanie Martina}, title = {Coordination of dynamic metallosupramolecular polymers (MEPEs)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160650}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Several transition metal ions, like Fe2+, Co2+, Ni2+, and Zn2+ complex to the ditopic ligand 1,4-bis(2,2':6',2''-terpyridin-4'-yl)benzene. Due to the high association constant, metal ion induced self-assembly of Fe2+, Co2+, and Ni2+ leads to extended, rigid-rod like metallo-supramolecular coordination polyelectrolytes (MEPEs) even in aqueous solution. Here, the kinetics of coordination and the kinetics of growth of MEPEs are presented. The species in solutions are analyzed by stopped-flow fluorescence spectroscopy, light scattering, viscometry and cryogenic transmission electron microscopy. At near-stoichiometric amounts of the reactants, high molar masses are obtained, which follow the order Ni-MEPE ~ Co-MEPE < Fe-MEPE. Furthermore, a way is presented to adjust the average molar mass, chain-length and viscosity of MEPEs using the monotopic chain stopper 4'-(phenyl)-2,2':6',2''-terpyridine.}, subject = {Supramolekulare Chemie}, language = {en} } @article{RestMayoralFernandez2013, author = {Rest, Christina and Mayoral, Mar{\´i}a Jos{\´e} and Fern{\´a}ndez, Gustavo}, title = {Aqueous Self-Sorting in Extended Supramolecular Aggregates}, series = {International Journal of Molecular Sciences}, volume = {14}, journal = {International Journal of Molecular Sciences}, number = {1}, doi = {10.3390/ijms14011541}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-129435}, pages = {1541-1565}, year = {2013}, abstract = {Self-organization and self-sorting processes are responsible for the regulation and control of the vast majority of biological processes that eventually sustain life on our planet. Attempts to unveil the complexity of these systems have been devoted to the investigation of the binding processes between artificial molecules, complexes or aggregates within multicomponent mixtures, which has facilitated the emergence of the field of self-sorting in the last decade. Since, artificial systems involving discrete supramolecular structures, extended supramolecular aggregates or gel-phase materials in organic solvents or—to a lesser extent—in water have been investigated. In this review, we have collected diverse strategies employed in recent years to construct extended supramolecular aggregates in water upon self-sorting of small synthetic molecules. We have made particular emphasis on co-assembly processes in binary mixtures leading to supramolecular structures of remarkable complexity and the influence of different external variables such as solvent and concentration to direct recognition or discrimination processes between these species. The comprehension of such recognition phenomena will be crucial for the organization and evolution of complex matter.}, language = {en} } @article{FosterEdkinsCameronetal.2014, author = {Foster, Jonathan A. and Edkins, Robert M. and Cameron, Gary J. and Colgin, Neil and Fucke, Katharina and Ridgeway, Sam and Crawford, Andrew G. and Marder, Todd B. and Beeby, Andrew and Cobb, Steven L. and Steed, Jonathan W.}, title = {Blending Gelators to Tune Gel Structure and Probe Anion-Induced Disassembly}, series = {Chemistry : A European Journal}, volume = {20}, journal = {Chemistry : A European Journal}, doi = {10.1002/chem.201303153}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121141}, pages = {279-91}, year = {2014}, abstract = {Blending different low molecular weight gelators (LMWGs) provides a convenient route to tune the properties of a gel and incorporate functionalities such as fluorescence. Blending a series of gelators having a common bis-urea motif, and functionalised with different amino acid-derived end-groups and differing length alkylene spacers is reported. Fluorescent gelators incorporating 1- and 2-pyrenyl moieties provide a probe of the mixed systems alongside structural and morphological data from powder diffraction and electron microscopy. Characterisation of the individual gelators reveals that although the expected α-urea tape motif is preserved, there is considerable variation in the gelation properties, molecular packing, fibre morphology and rheological behaviour. Mixing of the gelators revealed examples in which: 1) the gels formed separate, orthogonal networks maintaining their own packing and morphology, 2) the gels blended together into a single network, either adopting the packing and morphology of one gelator, or 3) a new structure not seen for either of the gelators individually was created. The strong binding of the urea functionalities to anions was exploited as a means of breaking down the gel structure, and the use of fluorescent gel blends provides new insights into anion-mediated gel dissolution.}, language = {en} } @phdthesis{Wich2009, author = {Wich, Peter Richard}, title = {Multifunctional Oligopeptides as an Artificial Toolkit for Molecular Recognition Events}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-38108}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {The main focus of this thesis was the synthesis and analysis of multifunctional oligopeptides. The study of their non-covalent interactions with various counterparts revealed interesting new results, leading to both methodological and application related progress. The first project of this thesis concentrated on the in-depth analysis of the peptide receptor CBS-Lys-Lys-Phe-NH2 to acquire a better understanding of its binding mode upon complexation with a substrate. In this context it was possible to develop—in cooperation with the group of Prof. Sebastian Schl{\"u}cker—a direct and label free spectroscopic detection of immobilized compounds which are often found in combinatorial libraries. This new screening method utilizes the advantages of the surface enhanced Raman spectroscopy and allowed for the first time a surface mapping of a single polystyrene bead for the identification of peptides in femtomolar concentrations. Hence, this method allows a very fast and sensitive detection of resin bound compounds. The development of this promising new approach set the starting point for future experiments to enable on-bead library screenings and to investigate the complex formation of immobilized compounds. After the comprehensive analysis of the basic structural features of small peptide receptors in the first part of this thesis, the second big block focused on its in vitro evaluation using biological relevant targets. Therefore, several different modifications of the initial peptide structures were synthesized. These modifications provided a molecular toolkit for the tailor made synthesis of structures individually designed for the respective target. The first tests addressed the interaction with Alzheimer's related amyloid fibrils. During these experiments, the successful SPPS syntheses of tri- and tetravalent systems were achieved. The comparison of the multivalent form with the corresponding monovalent version was then under special investigations. These concentrated mainly on the interaction with various bacteria strains, as well as with different parasites. To localize the compounds within the organisms, the synthesis of fluorescence labelled versions was achieved. In addition, several compounds were tested by the Institute for Molecular Infection Biology of the University of W{\"u}rzburg for their antibacterial activity. This thorough evaluation of the biological activity generated precious information about the influence of small structural changes in the peptide receptors. Especially the distinct influence of the multivalency effect and the acquired synthetic skills led to the development of an advanced non-covalent recognition event, as described in the final project of this thesis. The last part of this thesis discussed the development of a novel inhibitor for the serine protease beta-tryptase based on a tailor-made surface recognition event. It was possible to study and analyze the complex interaction with the unique structure of tryptase, that features a tetrameric frame and four catalytic cleavage sites buried deep inside of the hollow structure. However, the point of attack were not the four binding pockets, as mostly described in the literature, but rather the acidic areas around the cleavage sites and at the two circular openings. These should attract peptides with basic residues, which then can block the accessibility to the active sites. A combinatorial library of 216 tetravalent peptide compounds was synthesized to find the best structural composition for the non-covalent inhibition of beta-tryptase. For the screening of the library a new on-bead assay was applied. With this method a simultaneous readout of the total inhibition of all library members was possible, thus allowing a fast and direct investigation of the still resin bound inhibitors. Several additional experiments in solution unveiled the kinetics of the inhibition process. In conclusion, both mono- and multivalent inhibitors interact in a non-destructive and reversible way with the tryptase.}, subject = {Peptidsynthese}, language = {en} } @phdthesis{Walden2009, author = {Walden, Nicholas Sebastian}, title = {Neue zwitterionische Halbschalen als Bausteine f{\"u}r supramolekulare Kapseln}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-35256}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Ziel der Dissertation „Neue zwitterionische Halbschalen als Bausteine f{\"u}r supramolekulare Kapseln" war die Verkn{\"u}pfung zweier Guanidiniocarbonylpyrrolcarboxylat-Bindungsmotive von Schmuck {\"u}ber starre, sowohl aromatische als auch nichtaromatische Linker. Die so erhaltenen zwitterionische Halbschalen sollten in L{\"o}sung zu supramolekulare Kapseln aggregieren, welche einen Hohlraum ausweisen, in den Gastmolek{\"u}le eingelagert werden k{\"o}nnen. Dieses Bindungsmotiv ist selbstkomplement{\"a}r und daher in der Lage Homodimere auszubilden. Durch die Kombination aus Wasserstoffbr{\"u}cken und Ionenbindungen sind diese selbst in polaren L{\"o}semitteln wie DMSO oder Wasser stabil, im Gegensatz zu Systemen, welche z.B. nur {\"u}ber Wasserstoffbr{\"u}cken verf{\"u}gen und in polaren Medien wieder dissoziieren. Zur Synthese wurden zwei Bindungsmotive mittels Tetrahydroxybenzol verbr{\"u}ckt. Die eindeutige Charakterisierung erfolgte {\"u}ber NMR-Spektroskopie, Massen-Spektrometrie und R{\"o}ntgenstrukturanalyse. Anschließend wurde die Verbindung in die zwitterionische Form {\"u}berf{\"u}hrt und auf Kapselbildung hin untersucht (NMR, DOSY, Masse, Molecular Modelling). Die theoretischen Berechnungen wiesen darauf hin, dass die synthetisierten Halbschalen in der Lage sein sollten, Kapseln zu bilden. Trotz der erfolgreichen Synthese dieses neuartigen zwitterionischen Makrozyklus steht der experimentelle Nachweise auf Grund der schlechten L{\"o}slichkeit der Zwitterionen in allen verwendeten L{\"o}semitteln noch aus. Auch wurde Glucoluril als nichtaromatisches Linkermolek{\"u}l erfolgreich verwendet. Als erstes wurde das 4,4'-Diphenylglucoluril erfolgreich in der Kupplung eingesetzt. Es war m{\"o}glich, die so erhaltenen cis/trans-Makrozyklen s{\"a}ulenchromatographisch zu isolieren und mittels R{\"o}ntgenstrukturanalyse zu charakterisieren. Nach {\"U}berf{\"u}hrung in die Zwitterionen wurden diese wiederum auf die Kapselbildung hin untersucht (NMR, DOSY, Masse, Molecular Modelling). Berechnungen zufolge sollte die Kapselbildung m{\"o}glich sein, jedoch steht auch hier trotz erfolgreicher Synthese der experimentelle Nachweis auf Grund der Unl{\"o}slichkeit noch aus. Zur Verbesserung der L{\"o}slichkeit wurden zwei neue Glucolurilderivate entwickelt, welche am Phenylring mit Octyl- bzw. Triethylenglykolketten substituiert waren. Dadurch sollte die L{\"o}slichkeit der Zwitterionen in organischen bzw. w{\"a}ssrigen L{\"o}sungen erh{\"o}ht werden. Jedoch zeigte die Einf{\"u}hrung dieser Ketten keine wesentliche Verbesserung der L{\"o}slichkeit und somit konnte auch bei diesen neuen zwitterionischen Halbschalen keine Kapselbildung nachgewiesen werden. Im Rahmen dieser Dissertation wurden sieben neue zwitterionische makrozyklische Halbschalen synthetisiert und die daraus gewonnenen Erkenntnisse k{\"o}nnen als Ausgangspunkt verwendet werden, die L{\"o}slichkeit weiter zu verbessern.}, subject = {Supramolekulare Chemie}, language = {de} } @phdthesis{Stepanenko2008, author = {Stepanenko, Vladimir}, title = {Self-Assembly of Bay-Substituted Perylene Bisimide by Ligand-Metal Ion Coordination}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-32063}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {The subject of this thesis is the synthesis and characterization of PBI-based fluorescent metallosupramolecular polymers and cyclic arrays. Terpyridine receptor functionalized PBIs of predesigned geometry have been used as building blocks to construct desired macromolecular structures through metal-ion-directed self-assembly. These metallosupramolecular architectures have been investigated by NMR, UV/Vis and fluorescence spectroscopy, mass spectrometry, and atomic force microscopy.}, subject = {Supramolekulare Chemie}, language = {en} }