@phdthesis{Krenz2023, author = {Krenz, Bastian}, title = {The immune-evasive potential of MYC in pancreatic ductal adenocarcinoma}, doi = {10.25972/OPUS-32590}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325903}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Pancreatic ductal adenocarcinoma (PDAC) is predominantly driven by mutations in KRAS and TP53. However, PDAC tumors display deregulated levels of MYC and are a paradigm example for MYC-driven and -addicted tumors. For many years MYC was described as a transcription factor that regulates a pleiotropic number of genes to drive proliferation. Recent work sheds a different light on MYC biology. First, changes in gene expression that come along with the activation of MYC are mild and MYC seems to act more as a factor that reduces stress and increases resilience towards challenges during transcription. Second, MYC is a strong driver of immune evasion in different entities. In this study we depleted MYC in murine PDAC cells and revealed the immune dependent regression of tumors in an orthotope transplant model, as well as the activation of the innate immune system using global expression analysis, immunoblotting and fCLIP. These experiments revealed that endogenous double-stranded RNA is binding as a viral mimicry to Toll-like receptor 3, causing activation of TBK1 and downstream activation of a proimmunogenic transcription program. The regression of tumors upon depletion of MYC is dependent on this pathway since the knockout of TBK1 prevents regression of tumors after depletion of MYC. We can summarize this study in three main findings: First, the dominant and most important function of MYC in tumors is not to drive proliferation but to promote immune evasion and prevent immune-dependent regression of tumors. Second, cells monitor defects or delay in splicing and RNA processing and activate the immune system to clear cells that face problems with co-transcriptional processing. Third, MYC suppresses the activation of the cell-intrinsic innate immune system and shields highly proliferating cells from the recognition by the immune system. To translate this into a therapeutically approach, we replaced the shRNA mediated depletion of MYC by treatment with cardiac glycosides. Upon treatment with cardiac glycosides tumor cells reduce uptake of nutrients, causing a downregulation of MYC translation, inhibition of proliferation, glycolysis and lactate secretion. Lactate is a major reason for immune evasion in solid tumors since it dampens, amongst others, cytotoxic T cells and promotes regulatory T cells. Treatment of mice with cardiac glycosides causes a complete and immune-dependent remission of PDAC tumors in vivo, pointing out that cardiac glycosides have strong proimmunogenic, anti-cancer effects. More detailed analyses will be needed to dissect the full mechanism how cardiac glycosides act on MYC translation and immune evasion in PDAC tumors.}, subject = {Bauchspeicheldr{\"u}senkrebs}, language = {en} } @phdthesis{Schwarz2022, author = {Schwarz, Gisela Maria}, title = {Regulation von c-MYC durch CIP2A im kolorektalen Karzinom}, doi = {10.25972/OPUS-27618}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-276181}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Das kolorektale Karzinom ist eines der h{\"a}ufigsten beim Menschen vorkommenden Karzinome [2]. Diesem liegen unterschiedliche Mutationen zugrunde, die in knapp 100\% der kolorektalen Karzinome zu einer {\"U}berexpression von MYC f{\"u}hren, welches als Transkriptionsfaktor maßgeblich den Zellzyklus, Proliferation und Vaskularisierung beeinflusst [10,16]. Damit stellt MYC ein potenzielles Therapieziel in der Behandlung des Kolorektalen Karzinoms dar. Zus{\"a}tzlich konnte in den letzten Jahren ein Onkoprotein namens CIP2A identifiziert werden, welches nach Depletion mit einem Verlust von MYC Protein einhergeht [69]. Zus{\"a}tzlich ist CIP2A ein unabh{\"a}ngiger prognostischer Faktor im Kolorektalen Karzinom [70]. Diese Arbeit konnte zeigen, dass CIP2A-depletierte Zellen einen deutlichen Wachstumsnachteil gegen{\"u}ber unbehandelten Zellen zeigen. Dieser Unterschied kann nicht durch eine gesteigerte Apoptose, sondern vielmehr durch einen verl{\"a}ngerten Zellzyklus erkl{\"a}rt werden. Weiterhin konnte eine neue Zelllinie mit DOX-induzierbarer shCIP2A hergestellt werden, die f{\"u}r weitere Experimente genutzt werden kann. Entgegen der Wirkweise im Zervixkarzinom [69], konnte im kolorektalen Karzinom kein Einfluss auf die Stabilit{\"a}t von MYC Protein durch CIP2A nachgewiesen werden. Auch konnte der Verlust von MYC nach CIP2A Knockdown nicht durch gleichzeitige Inhibierung des Abbaus, durch Okadas{\"a}ure, MG132 oder in den FBWX7-defizienten Zellen, verhindert werden. Stattdessen resultiert die Herunterregulation von CIP2A in einem leichten R{\"u}ckgang der MYC-mRNA Menge und einem deutlichen Verlust an MYC-Protein. In Zellen mit verschiedenen Konstrukten der MYC Transkripte kann dieser Verlust an MYC Protein auf eine translationelle Regulation in der 5'UTR zur{\"u}ckgef{\"u}hrt werden, was eine bisher nicht beschriebene Wirkweise von CIP2A darstellt. Da CIP2A in normalen Zellen praktisch nicht exprimiert ist [78], k{\"o}nnte dies ein m{\"o}gliches Ziel in der Tumortherapie darstellen. Dieses gilt es in weiteren Experimenten noch genauer zu untersuchen.}, subject = {Myc}, language = {de} } @phdthesis{Hofstetter2022, author = {Hofstetter, Julia Eva Ines}, title = {MYC shapes the composition of RNA polymerase II through direct recruitment of transcription elongation factors}, doi = {10.25972/OPUS-24035}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240358}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The transcription factor MYC is a onco-protein, found to be deregulated in many human cancers. High MYC levels correlate with an aggressive tumor outcome and poor survival rates. Despite MYC being discovered as an oncogene already in the 1970s, how MYC regulates transcription of its target genes, which are involved in cellular growth and proliferation, is not fully understood yet. In this study, the question how MYC influences factors interacting with the RNA polymerase II ensuring productive transcription of its target genes was addressed using quantitative mass spectrometry. By comparing the interactome of RNA polymerase II under varying MYC levels, several potential factors involved in transcriptional elongation were identified. Furthermore, the question which of those factors interact with MYC was answered by employing quantitative mass spectrometry of MYC itself. Thereby, the direct interaction of MYC with the transcription elongation factor SPT5, a subunit of the DRB-sensitivity inducing factor, was discovered and analyzed in greater detail. SPT5 was shown to be recruited to chromatin by MYC. In addition, the interaction site of MYC on SPT5 was narrowed down to its evolutionary conserved NGN-domain, which is the known binding site for SPT4, the earlier characterized second subunit of the DRB-sensitivity inducing factor. This finding suggests a model in which MYC and SPT4 compete for binding the NGN-domain of SPT5. Investigations of the SPT5-interacting region on MYC showed binding of SPT5 to MYC's N-terminus including MYC-boxes 0, I and II. In order to analyze proteins interacting specifically with the N-terminal region of MYC, a truncated MYC-mutant was used for quantitative mass spectrometric analysis uncovering reduced binding for several proteins including the well-known interactor TRRAP and TRRAP-associated complexes. Summarized, ...}, subject = {Transkription }, language = {en} } @phdthesis{Gerlach2018, author = {Gerlach, Jennifer}, title = {Influence of Myc-interacting proteins on transcription and development}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154917}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The transcription factor Myc interacts with several co-factors to regulate growth and proliferationand thereby enables normal animal development. Deregulation of Myc is associated witha wide range of human tumors. Myc binds to DNA together with its dimerization partner Max, preferentially to canonical E-box motifs, but this sequence-specific interaction is probably not sufficient for Myc's binding to target genes. In this work, the PAF1 complex was characterized as a novel co-factor of Myc in Drosophila melanogaster. All components of the complex are required for Myc's recruitment to chromatin, but the subunit Atu has the strongest effect on Myc's binding to target genes through ist direct physical interaction with Myc. Unexpectedly, the impact of Atu depletion on the Expression of Myc target genes was weak compared to its effect on Myc binding. However, the influence of Atu becomes more prominent in situations of elevated Myc levels in vivo . Mycrepressed as well as Myc-activated targets are affected, consistent with the notion that Myc recruitment is impaired. An independent set of analyses revealed that Myc retains substantial activity even in the complete absence of Max. The overexpression of Myc in Max0 mutants specifically blocks their pupariation without affecting their survival, which raised the possibility that Myc might affect ecdysone biosynthesis. This connection was studied in the second part of this Thesis which showed that Myc inhibits the expression of ecdysteroidogenic genes and thereby the production of ecdysone. Myc most likely affects the signaling pathways (PTTH and insulin signaling) upstream of the PG, the organ where ecdysone is produced. By combining existing ChIPseq, RNAseq and electronic annotation data, we identified five potential Maxindependent Myc targets and provided experimental data that they might be involved in Myc's effect on Max mutant animals. Together our data confirm that some Myc functions are Max-independent and they raise the possibility that this effect might play a role during replication.}, subject = {Taufliege}, language = {en} } @phdthesis{Uthe2018, author = {Uthe, Friedrich Wilhelm}, title = {Identifikation synthetisch-letaler Interaktionen mit dem Tumorsuppressor APC und Beeinflussung von MYC-Proteinmengen durch Translationsinhibition im kolorektalen Karzinom}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166451}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Der Tumorsupressor APC ist in der Mehrzahl aller F{\"a}lle kolorektaler Karzinome bereits in der initialen Phase der Karzinogenese mutiert. Diese Mutationen f{\"u}hren zu einer aberranten Aktivierung des Wnt-Signalweges sowie zu weiteren die Karzinogenese vorrantreibenden Aktivit{\"a}ten, beispielsweise einem ver{\"a}nderten Migrationsverhalten. Dieser Dissertation zu Grunde liegt die Idee, dass durch die Trunkierung des APC-Proteins aber auch Abh{\"a}ngigkeiten von Genaktivit{\"a}ten entstehen, die zuvor entbehrlich waren. Solche synthetisch letalen Gene sollten in einem high-content shRNA-Screen gefunden werden. F{\"u}r die Durchf{\"u}hrung des Screens wurde ein von der SW480 Kolonkarzinomzelllinie abgeleitetes, isogenes Zellsystem generiert, welches durch Induktion mit Doxyzyklin das vollst{\"a}ndige APC-Allel (FL-APC) exprimiert. Infolge dieser Expression zeigen die Zellen einen weniger malignen Ph{\"a}notyp. Dies spiegelt sich darin wider, dass die Zellen durch FL-APC Expression in ihrer Wnt-Signalwegsaktivit{\"a}t eingeschr{\"a}nkt werden. Doxyzyklininduzierte Zellen sind schlechter in der Lage ohne Adh{\"a}sion zu proliferieren als nicht induzierte Zellen. Andererseits ist ihre F{\"a}higkeit einem FKS-gradienten entlang zu migrieren verbessert. Der shRNA-Screen wurde mit der Decipher shRNA-Bibliothek durchgef{\"u}hrt. Diese enth{\"a}lt 27.500 verschiedene shRNAs mit Interferenzaktivit{\"a}t gegen 5.000 mRNAs, die potentiell pharmakologisch inhibierbare Proteine kodieren. Die besten zwei Kandidaten f{\"u}r eine synthetisch letale Interaktion mit trunkiertem APC, BCL2L1 und EIF2B5 wurden im Verlauf einer Masterarbeit bzw. direkt in dieser Disseration validiert. EIF2B5 zeigte in vitro nach Depletion durch unterschiedliche shRNAs einen di erentiellen Proliferationse ekt bei FL-APC induzierten im Vergleich zu kontrollbehandelten Zellen. Dieser di erentielle E ekt konnte in einem weiteren Modellsystem, SW480 Zellen mit konstitutiver FL-APC Expression, ebenfalls validiert werden. Durch Expression einer shRNA mit Aktivit{\"a}t gegen EIF2B5 werden in beiden Zellsystem die unfolded protein response (UPR) Gene DDIT3 und splXBP1 aktiviert. Interessanterweise werden durch die Expression von FL-APC diese Gene reprimiert. Im Promotor der EIF2B5-mRNA be ndet sich eine Bindestelle f{\"u}r MYC. Es ist denkbar, dass durch die Expression von FL-APC eine globale Ver{\"a}nderung der Genexpression vorgenommen wird, die einerseits eine Repression von EIF2B5 nach sich zieht aber andererseits eine hierdurch ausgel{\"o}ste ER-Stress Antwort verhindert. Eine Inhibition von EIF2B5 ohne diese Adaption andererseits f{\"u}hrt nach diesem Model zu einer UPR-aktivierten Apoptose. In einem zweiten Projekt wurde das {\"u}berraschende Verhalten von Kolonkarzinomzellen untersucht, die nach Zugabe von BEZ235, einem dualen PI3K/mTOR Inhibitor, trotz gegenteiliger Erwartungen MYC-Proteinmengen erh{\"o}hen. Eine Repression wurde erwar- tet, weil die Inhibition von PI3K einerseits zu einer proteasomalen Destabiliserung und andererseits die mTOR Inhibition zu einer verringerten Synthese von MYC f{\"u}hren sollte. W{\"a}hrend bereits gezeigt werden konnte, dass durch einen FOXO-vermittelten Mechanismus MAPK-abh{\"a}ngig die MYC-Expression verst{\"a}rkt wird, wurde in dieser Dissertation die erwartete Translationsinhibition untersucht. BEZ235 inhibiert zwar CAP-abh{\"a}ngige Translation, das MYC Protein wird jedoch aufgrund einer IRES-vermittelten Translation weiterhin exprimiert. Silvestrol, ein Inhibitor der Helikase eIF4A andererseits interveniert mit CAP- und IRES-abh{\"a}ngiger Translation und kann die MYC-Proteinkonzentrationen verringern. Wir konnten zudem feststellen, dass die Applikation von Silvestrol auch in vivo m{\"o}glich und wirksam ist und zudem tolleriert wird. Dies gibt Anlass zur Ho nung, dass eine Intervention der Translation auch im Menschen eine valide Strategie zur Behandlung MYC-getriebener Tumore sein k{\"o}nnte.}, subject = {Colonkrebs}, language = {de} } @phdthesis{Dejure2018, author = {Dejure, Francesca Romana}, title = {Investigation of the role of MYC as a stress responsive protein}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158587}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The transcription factor MYC is deregulated in over 70\% of all human tumors and, in its oncogenic form, plays a major role in the cancer metabolic reprogramming, promoting the uptake of nutrients in order to sustain the biosynthetic needs of cancer cells. The research presented in this work aimed to understand if MYC itself is regulated by nutrient availability, focusing on the two major fuels of cancer cells: glucose and glutamine. Initial observations showed that endogenous MYC protein levels strongly depend on the availability of glutamine, but not of glucose. Subsequent analysis highlighted that the mechanism which accounts for the glutamine-mediated regulation of MYC is dependent on the 3´-untranslated region (3´-UTR) of MYC. Enhanced glutamine utilization by tumors has been shown to be directly linked to MYC oncogenic activity and MYC-dependent apoptosis has been observed under glutamine starvation. Such effect has been described in experimental systems which are mainly based on the use of MYC transgenes that do not contain the 3´-UTR. It was observed in the present study that cells are able to survive under glutamine starvation, which leads to cell cycle arrest and not apoptosis, as previously reported. However, enforced expression of a MYC transgene, which lacks the 3´-UTR, strongly increases the percentage of apoptotic cells upon starvation. Evaluation of glutamine-derived metabolites allowed to identify adenosine nucleotides as the specific stimulus responsible for the glutamine-mediated regulation of MYC, in a 3´-UTR-dependent way. Finally, glutamine-dependent MYC-mediated effects on RNA Polymerase II (RNAPII) function were evaluated, since MYC is involved in different steps of global transcriptional regulation. A global loss of RNAPII recruitment at the transcriptional start site results upon glutamine withdrawal. Such effect is overcome by enforced MYC expression under the same condition. This study shows that the 3´UTR of MYC acts as metabolic sensor and that MYC globally regulates the RNAPII function according to the availability of glutamine. The observations presented in this work underline the importance of considering stress-induced mechanisms impinging on the 3´UTR of MYC.}, subject = {Myc}, language = {en} } @phdthesis{Jung2016, author = {Jung, Lisa Anna}, title = {Targeting MYC Function as a Strategy for Tumor Therapy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146993}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {A large fraction of human tumors exhibits aberrant expression of the oncoprotein MYC. As a transcription factor regulating various cellular processes, MYC is also crucially involved in normal development. Direct targeting of MYC has been a major challenge for molecular cancer drug discovery. The proof of principle that its inhibition is nevertheless feasible came from in vivo studies using a dominant-negative allele of MYC termed OmoMYC. Systemic expression of OmoMYC triggered long-term tumor regression with mild and fully reversible side effects on normal tissues. In this study, OmoMYC's mode of action was investigated combining methods of structural biology and functional genomics to elucidate how it is able to preferentially affect oncogenic functions of MYC. The crystal structure of the OmoMYC homodimer, both in the free and the E-box-bound state, was determined, which revealed that OmoMYC forms a stable homodimer, and as such, recognizes DNA via the same base-specific DNA contacts as the MYC/MAX heterodimer. OmoMYC binds DNA with an equally high affinity as MYC/MAX complexes. RNA-sequencing showed that OmoMYC blunts both MYC-dependent transcriptional activation and repression. Genome-wide DNA-binding studies using chromatin immunoprecipitation followed by high-throughput sequencing revealed that OmoMYC competes with MYC/MAX complexes on chromatin, thereby reducing their occupancy at consensus DNA binding sites. The most prominent decrease in MYC binding was seen at low-affinity promoters, which were invaded by MYC at oncogenic levels. Strikingly, gene set enrichment analyses using OmoMYC-regulated genes enabled the identification of tumor subgroups with high MYC levels in multiple tumor entities. Together with a targeted shRNA screen, this identified novel targets for the eradication of MYC-driven tumors, such as ATAD3A, BOP1, and ADRM1. In summary, the findings suggest that OmoMYC specifically inhibits tumor cell growth by attenuating the expression of rate-limiting proteins in cellular processes that respond to elevated levels of MYC protein using a DNA-competitive mechanism. This opens up novel strategies to target oncogenic MYC functions for tumor therapy.}, subject = {Myc}, language = {en} } @phdthesis{Herter2015, author = {Herter, Eva Kristine}, title = {Characterization of direct Myc target genes in Drosophila melanogaster and Investigating the interaction of Chinmo and Myc}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122272}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The correct regulation of cell growth and proliferation is essential during normal animal development. Myc proteins function as transcription factors, being involved in the con-trol of many growth- and proliferation-associated genes and deregulation of Myc is one of the main driving factors of human malignancies. The first part of this thesis focuses on the identification of directly regulated Myc target genes in Drosophila melanogaster, by combining ChIPseq and RNAseq approaches. The analysis results in a core set of Myc target genes of less than 300 genes which are mainly involved in ribosome biogenesis. Among these genes we identify a novel class of Myc targets, the non-coding small nucleolar RNAs (snoRNAs). In vivo studies show that loss of snoRNAs not only impairs growth during normal development, but that overexpression of several snoRNAs can also enhance tumor development in a neu-ronal tumor model. Together the data show that Myc acts as a master regulator of ribo-some biogenesis and that Myc's transforming effects in tumor development are at least partially mediated by the snoRNAs. In the second part of the thesis, the interaction of Myc and the Zf-protein Chinmo is described. Co-immunoprecipitations of the two proteins performed under endogenous and exogenous conditions show that they interact physically and that neither the two Zf-domains nor the BTB/POZ-domain of Chinmo are important for this interaction. Fur-thermore ChIP experiments and Myc dependent luciferase assays show that Chinmo and Myc share common target genes, and that Chinmo is presumably also involved in their regulation. While the exact way of how Myc and Chinmo genetically interact with each other still has to be investigated, we show that their interaction is important in a tumor model. Overexpression of the tumor-suppressors Ras and Chinmo leads to tu-mor formation in Drosophila larvae, which is drastically impaired upon loss of Myc.}, subject = {Myc}, language = {en} } @phdthesis{Wiese2015, author = {Wiese, Katrin Evelyn}, title = {Sensing supraphysiological levels of MYC : mechanisms of MIZ1-dependent MYC-induced Apoptosis in Mammary Epithelial Cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132532}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Deregulated MYC expression contributes to cellular transformation as well as progression and maintenance of human tumours. Interestingly, in the absence of additional genetic alterations, potentially oncogenic levels of MYC sensitise cells to a variety of apoptotic stimuli. Hence, MYC-induced apoptosis has long been recognised as a major barrier against cancer development. However, it is largely unknown how cells discriminate physiological from supraphysiological levels of MYC in order to execute an appropriate biological response. The experiments described in this thesis demonstrate that induction of apoptosis in mammary epithelial cells depends on the repressive actions of MYC/MIZ1 complexes. Analysis of gene expression profiles and ChIP-sequencing experiments reveals that high levels of MYC are required to invade low-affinity binding sites and repress target genes of the serum response factor SRF. These genes are involved in cytoskeletal dynamics as well as cell adhesion processes and are likely needed to transmit survival signals to the AKT kinase. Restoration of SRF activity rescues MIZ1- dependent gene repression and increases AKT phosphorylation and downstream function. Collectively, these results indicate that association with MIZ1 leads to an expansion of MYC's transcriptional response that allows sensing of oncogenic levels, which points towards a tumour-suppressive role for the MYC/MIZ1 complex in epithelial cells.}, subject = {Myc}, language = {en} } @phdthesis{Jaenicke2015, author = {J{\"a}nicke, Laura Annika}, title = {Regulation of MYC Activity by the Ubiquitin-Proteasome System}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123339}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The oncogenic MYC protein is a transcriptional regulator of multiple cellular processes and is aberrantly activated in a wide range of human cancers. MYC is an unstable protein rapidly degraded by the ubiquitin-proteasome system. Ubiquitination can both positively and negatively affect MYC function, but its direct contribution to MYC-mediated transactivation remained unresolved. To investigate how ubiquitination regulates MYC activity, a non-ubiquitinatable MYC mutant was characterized, in which all lysines are replaced by arginines (K-less MYC). The absence of ubiquitin-acceptor sites in K-less MYC resulted in a more stable protein, but did not affect cellular localization, chromatin-association or the ability to interact with known MYC interaction partners. Unlike the wild type protein, K-less MYC was unable to promote proliferation in immortalized mammary epithelial cells. RNA- and ChIP-Sequencing analyses revealed that, although K-less MYC was present at MYC-regulated promoters, it was a weaker transcriptional regulator. The use of K-less MYC, a proteasomal inhibitor and reconstitution of individual lysine residues showed that proteasomal turnover of MYC is required for MYC target gene induction. ChIP-Sequencing of RNA polymerase II (RNAPII) revealed that MYC ubiquitination is dispensable for RNAPII recruitment and transcriptional initiation but is specifically required to promote transcriptional elongation. Turnover of MYC is required to stimulate histone acetylation at MYC-regulated promoters, which depends on a highly conserved region in MYC (MYC box II), thereby enabling the recruitment of BRD4 and P-TEFb and the release of elongating RNAPII from target promoters. Inhibition of MYC turnover enabled the identification of an intermediate in MYC-mediated transactivation, the association of MYC with the PAF complex, a positive elongation factor, suggesting that MYC acts as an assembly factor transferring elongation factors onto RNAPII. The interaction between MYC and the PAF complex occurs via a second highly conserved region in MYC's amino terminus, MYC box I. Collectively, the data of this work show that turnover of MYC coordinates histone acetylation with recruitment and transfer of elongation factors on RNAPII involving the cooperation of MYC box I and MYC box II.}, subject = {Myc}, language = {en} }