@phdthesis{Burkard2010, author = {Burkard, Natalie}, title = {Signal{\"u}bertragungswege und Pr{\"a}ventionsm{\"o}glichkeiten der kardialen Hypertrophie : conditional overexpression of neuronal nitric oxide synthase is cardioprotective in ischemia-reperfusion}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-51832}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Zusammenfassung: Wie fr{\"u}her schon gezeigt, wird der L-Typ Ca2+-Kanal durch eine induzierbare, myokardspezifische {\"U}berexpression der neuronalen Stickstoffmonoxidsynthase (nNOS) inhibiert. Gleichzeitig bewirkt diese {\"U}berexpression eine verminderte kardiale Kontraktilit{\"a}t1 (Burkard N. et al. (2007). Circ Res 100, 32-44). nNOS interagiert mit vielen verschiedenen Kompartimenten und Kan{\"a}len innerhalb der Zelle. In dieser Arbeit wurde gezeigt, dass eine nNOS {\"U}berexpression nach Isch{\"a}mie-Reperfusion kardioprotektiv wirkt. Dieses wird durch eine Inhibition der Mitochondrienfunktion und durch eine Verminderung der reaktiven Sauerstoffspezies (ROS) erm{\"o}glicht. In einer fr{\"u}heren Arbeit wurde der Effekt der induzierbaren und myokardspezifischen {\"U}berexpression von nNOS unter physiologischen Bedingungen am transgenen Tiermodell untersucht. Diese Arbeit besch{\"a}ftigt sich nun mit der {\"U}berexpression von nNOS unter pathophysiologischen (Isch{\"a}mie-Reperfusion) Bedingungen. Ein Isch{\"a}mie-Reperfusions-Schaden bewirkt bei Wildtyp-M{\"a}usen, sowie bei transgener nNOS {\"U}berexpression eine Anreicherung von nNOS in den Mitochondrien. Elektronenmikroskopische Aufnahmen von Mausmyokard haben gezeigt, dass bei {\"U}berexpression nNOS zus{\"a}tzlich in den Mitochondrien lokalisiert ist. Diese Translokation von nNOS in die Mitochondrien ist abh{\"a}ngig von HSP90. Isch{\"a}mie- Reperfusionsexperimente an isolierten M{\"a}useherzen zeigten einen kardioprotektiven Effekt der nNOS {\"U}berexpression (30min post ischemia, LVDP 27.0±2.5mmHg vs. 45.2±1.9mmHg, n=12, p<0.05). Dieser positive Effekt konnte bei der Bestimmung der Infarktgr{\"o}ße best{\"a}tigt werden. nNOS {\"u}berexprimierende M{\"a}use hatten eine kleinere Infarktgr{\"o}ße nach Isch{\"a}mie-Reperfusion (36.6±8.4 relative \% vs. 61.1±2.9 relative \%, n=8, p<0.05). Die {\"U}berexpression von nNOS bewirkte ebenfalls einen signifikanten Anstieg des mitochondrialen Nitrit-Levels, begleitet von einer Verminderung der Cytochrom C Oxidase Aktivit{\"a}t (72.0±8.9units/ml in nNOS overexpressing mice vs. 113.2±17.1units/ml in non-induced mice, n=12, p<0.01), was zu einer Hemmung der Mitochondrienfunktion f{\"u}hrt. Dementsprechend war der Sauerstoffverbrauch (gemessen an isolierten Herzmuskelstreifen) schon unter basalen Bedingungen beinNOS {\"U}berexpression vermindert (0.016±0.0015 vs. 0.024±0.006ml[O2] x mm-3 x min-1, n=13, p<0.05). Außerdem war die ROS Konzentration in Herzen von nNOS {\"u}berexprimierenden M{\"a}usen signifikant vermindert (6.14±0.685 vs. 14.53±1.7μM, n=8, p<0.01). Die Zugabe von verschiedenen Inhibitoren, Western Blot- und Aktivit{\"a}tsuntersuchungen zeigten schließlich, dass diese niedrigere ROS Konzentration durch eine verminderte Xanthin Oxidoreduktase Aktivit{\"a}t hervorgerufen wurde. Zusammenfassend hat diese Arbeit gezeigt, dass eine induzierbare und myokardspezifische {\"U}berexpression von nNOS unter pathophysiologischen Bedingungen (Isch{\"a}mie-Reperfusion) kardioprotektiv wirkt. Zus{\"a}tzlich zu der Verminderung des myokardialen Ca2+-{\"U}berschusses nach Reperfusion k{\"o}nnte dieser protektive Effekt durch eine Hemmung der Mitochondrienfunktion bedingt sein, schließlich wird der Sauerstoffverbrauch schon unter basalen Bedingungen reduziert}, subject = {Herzhypertrophie}, language = {en} } @article{LotzHerrmannNotzetal.2021, author = {Lotz, Christopher and Herrmann, Johannes and Notz, Quirin and Meybohm, Patrick and Kehl, Franz}, title = {Mitochondria and pharmacologic cardiac conditioning — At the heart of ischemic injury}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {6}, issn = {1422-0067}, doi = {10.3390/ijms22063224}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285368}, year = {2021}, abstract = {Pharmacologic cardiac conditioning increases the intrinsic resistance against ischemia and reperfusion (I/R) injury. The cardiac conditioning response is mediated via complex signaling networks. These networks have been an intriguing research field for decades, largely advancing our knowledge on cardiac signaling beyond the conditioning response. The centerpieces of this system are the mitochondria, a dynamic organelle, almost acting as a cell within the cell. Mitochondria comprise a plethora of functions at the crossroads of cell death or survival. These include the maintenance of aerobic ATP production and redox signaling, closely entwined with mitochondrial calcium handling and mitochondrial permeability transition. Moreover, mitochondria host pathways of programmed cell death impact the inflammatory response and contain their own mechanisms of fusion and fission (division). These act as quality control mechanisms in cellular ageing, release of pro-apoptotic factors and mitophagy. Furthermore, recently identified mechanisms of mitochondrial regeneration can increase the capacity for oxidative phosphorylation, decrease oxidative stress and might help to beneficially impact myocardial remodeling, as well as invigorate the heart against subsequent ischemic insults. The current review highlights different pathways and unresolved questions surrounding mitochondria in myocardial I/R injury and pharmacological cardiac conditioning.}, language = {en} }