@phdthesis{Banik2023, author = {Banik, Amitayus}, title = {Two Approaches to the Baryon Asymmetry of the Universe}, doi = {10.25972/OPUS-32046}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-320468}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Explaining the baryon asymmetry of the Universe has been a long-standing problem of particle physics, with the consensus being that new physics is required as the Standard Model (SM) cannot resolve this issue. Beyond the Standard Model (BSM) scenarios would need to incorporate new sources of \(CP\) violation and either introduce new departures from thermal equilibrium or modify the existing electroweak phase transition. In this thesis, we explore two approaches to baryogenesis, i.e. the generation of this asymmetry. In the first approach, we study the two-particle irreducible (2PI) formalism as a means to investigate non-equilibrium phenomena. After arriving at the renormalised equations of motions (EOMs) to describe the dynamics of a phase transition, we discuss the techniques required to obtain the various counterterms in an on-shell scheme. To this end, we consider three truncations up to two-loop order of the 2PI effective action: the Hartree approximation, the scalar sunset approximation and the fermionic sunset approximation. We then reconsider the renormalisation procedure in an \(\overline{\text{MS}}\) scheme to evaluate the 2PI effective potential for the aforementioned truncations. In the Hartree and the scalar sunset approximations, we obtain analytic expressions for the various counterterms and subsequently calculate the effective potential by piecing together the finite contributions. For the fermionic sunset approximation, we obtain similar equations for the counterterms in terms of divergent parts of loop integrals. However, these integrals cannot be expressed in an analytic form, making it impossible to evaluate the 2PI effective potential with the fermionic contribution. Our main results are thus related to the renormalisation programme in the 2PI formalism: \( (i) \)the procedure to obtain the renormalised EOMs, now including fermions, which serve as the starting point for the transport equations for electroweak baryogenesis and \( (ii) \) the method to obtain the 2PI effective potential in a transparent manner. In the second approach, we study baryogenesis via leptogenesis. Here, an asymmetry in the lepton sector is generated, which is then converted into the baryon asymmetry via the sphaleron process in the SM. We proceed to consider an extension of the SM along the lines of a scotogenic framework. The newly introduced particles are charged odd under a \(\mathbb{Z}_2\) symmetry, and masses for the SM neutrinos are generated radiatively. The \(\mathbb{Z}_2\) symmetry results in the lightest BSM particle being stable, allowing for a suitable dark matter (DM) candidate. Furthermore, the newly introduced heavy Majorana fermionic singlets provide the necessary sources of \(CP\) violation through their Yukawa interactions and their out-of-equilibrium decays produce a lepton asymmetry. This model is constrained from a wide range of observables, such as consistency with neutrino oscillation data, limits on branching ratios of charged lepton flavour violating decays, electroweak observables and obtaining the observed DM relic density. We study leptogenesis in this model in light of the results of a Markov chain Monte Carlo scan, implemented in consideration of the aforementioned constraints. Successful leptogenesis in this model, to account for the baryon asymmetry, then severely constrains the available parameter space.}, subject = {Baryonenasymmetrie}, language = {en} }