@phdthesis{Xiao2023, author = {Xiao, Yin}, title = {Lack of NFATc1 SUMOylation prevents autoimmunity and alloreactivity}, doi = {10.25972/OPUS-32105}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-321054}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {SUMOylation, as a post-translational modification, plays a crucial role in several biological processes. Small ubiquitin-like modifier (SUMO) proteins can be reversibly linked to the lysine residues located within specific motifs on numerous target proteins, leading to the change of stability, localization, activity of target proteins, mostly by promoting or interfering with the interaction with other molecules. Consequently, it can regulate gene transcription, migration, cell cycle progression, cellular responses to stress, and tumorigenesis. NFATc1 belongs to the Nuclear Factor of Activated T-cells (NFAT) transcription factor family, which is dephosphorylated and translocates to the nucleus upon cell stimulation, which provokes Ca2+ signalling. NFAT plays a crucial role in the development and function of the immune system. NFATc1 has three SUMOylation sites at the position of aa 349, 702, and 914. In our previous study, we demonstrated that point mutations performed on the SUMOylation sites on all three or only at the lysine residues K702 and K914 lead to enhanced expression of IL-2 in vitro. To evaluate the function of SUMOylation of NFATc1 on T cell-mediated immunity in vivo, we not only generated a transgenic mouse strain (NFATc1/ΔS+ mouse) by point mutations from Lysine to Arginine on the two SUMOylation sites within exon 10 of Nfatc1 to prevent their SUMOylation, but in combination created another mouse strain (NFATc1/ΔBC+ mouse) that is completely Nfatc1 exon 10-ablated by using the LoxP/Cre system. In NFATc1/ΔS+ T cells, we observed enhanced IL-2 production and less IL-17A and IFN-γ expression. In line with exon 10 bearing the relevant SUMO sites, NFATc1/ΔBC+ CD4+ T cells behaved similarly as NFATc1/ΔS+ ones. The mechanism is that elevated IL-2 secretion can counteract the expression of IL-17A and IFN-γ via STAT5 and Blimp-1 induction. Afterwards, Blimp-1 suppressed IL-2 itself as well as Bcl2A1. Next, we performed two disease models with our NFATc1/ΔS+ mice. In a major mismatch model for acute graft-versus-host disease, we found that the mice transplanted with NFATc1/ΔS+ CD3+ T cells developed less severe disease, and T cells proliferated less due to increased Tregs. Moreover, when transferring 2D2.NFATc1/ΔS+ Th1 plus Th17 cells to Rag1-/- mice to induce experimental autoimmune encephalitis, we also observed ameliorated disease compared to animals with transferred WT T cells as well as increased Tregs. Taking all data together, the deficiency in SUMOylation of NFATc1 leads to an elevated IL-2 secretion in T cells and subsequent activation of STAT5, which competes with STAT3 to inhibit IL-17A production and promotes Treg expansion, as well as to an enforcement of Blimp-1 expression, which suppresses IFN-γ and IL-2 expression. Consequently and despite a short phase of enhanced IL-2 secretion, the deficiency of SUMOylation on NFATc1 can protect from autoreactive and alloreactive diseases. Moreover, to further understand the function of SUMOylation of NFATc1 in humans, we started by establishing an in vitro 3D culture system for tonsil organoids, which was successful in the presence of feeder cells, along with IL-4 and IL-7 cytokines. To confirm that our 3D tonsil organoids can respond to real antigens, we used CMV peptides and peptides of spike proteins from Covid-19 as real antigens, and co-cultured with tonsil organoids, which indeed can generate memory cells and plasmablasts. In the end, we also compared 3D to 2D cultures. Although the total numbers of all B cell subsets were much less in 3D culture than that in 2D culture, still, it indicates that this in-vitro culture system has its limitation, while being usable to produce the similar results as 2D did. Therefore, this 3D culture system can be used as a platform to investigate NFATc1/ΔS+ or NFATc1/ΔBC+ TFH and TFR cells in the dynamic of human GC responses.}, language = {en} } @article{BarahonadeBritoKleinHesslingSerflingetal.2022, author = {Barahona de Brito, Carlotta and Klein-Hessling, Stefan and Serfling, Edgar and Patra, Amiya Kumar}, title = {Hematopoietic stem and progenitor cell maintenance and multiple lineage differentiation is an integral function of NFATc1}, series = {Cells}, volume = {11}, journal = {Cells}, number = {13}, issn = {2073-4409}, doi = {10.3390/cells11132012}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-278809}, year = {2022}, abstract = {Hematopoietic stem and progenitor cell (HSPC) maintenance and the differentiation of various lineages is a highly complex but precisely regulated process. Multiple signaling pathways and an array of transcription factors influence HSPC maintenance and the differentiation of individual lineages to constitute a functional hematopoietic system. Nuclear factor of activated T cell (NFAT) family transcription factors have been studied in the context of development and function of multiple mature hematopoietic lineage cells. However, until now their contribution in HSPC physiology and HSPC differentiation to multiple hematopoietic lineages has remained poorly understood. Here, we show that NFAT proteins, specifically NFATc1, play an indispensable role in the maintenance of HSPCs. In the absence of NFATc1, very few HSPCs develop in the bone marrow, which are functionally defective. In addition to HSPC maintenance, NFATc1 also critically regulates differentiation of lymphoid, myeloid, and erythroid lineage cells from HSPCs. Deficiency of NFATc1 strongly impaired, while enhanced NFATc1 activity augmented, the differentiation of these lineages, which further attested to the vital involvement of NFATc1 in regulating hematopoiesis. Hematopoietic defects due to lack of NFATc1 activity can lead to severe pathologies such as lymphopenia, myelopenia, and a drastically reduced lifespan underlining the critical role NFATc1 plays in HSPC maintenance and in the differentaion of various lineages. Our findings suggest that NFATc1 is a critical component of the myriad signaling and transcriptional regulators that are essential to maintain normal hematopoiesis.}, language = {en} } @phdthesis{Giampaolo2022, author = {Giampaolo, Sabrina}, title = {Role of the transcription factor NFATc1 during the early stages of thymocyte development}, doi = {10.25972/OPUS-24639}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246394}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {T lymphocytes (T cells) represent one of the major cell populations of the immune system. Named by the place of their development, the thymus, several types can be distinguished as the αβ T cells, the γδ T cells, the mucosa-associated invariant T cells (MAIT), and the natural killer T (NKT) cells. The αβ lineages of CD4+ THelper and the CD8+ T cytotoxic cells with the T cell receptor (TCR) composed of α- and β-chain are major players of the adaptive immune system. In the thymus, CD4+ and CD8+ single positive (SP) αβ cells represent the ultimate result of positive and negative selection of CD4+CD8+ double positive (DP) thymocytes. The DP population derives from the double negative (DN) thymocytes that develop from bone marrow-derived progenitors through different stages (DN1-DN4) that are characterized by CD25 and CD44 surface expression. NFATc1, a member of the Nuclear Factor of Activated T cells (NFAT) transcription factors family, is critically involved in the differentiation and function of T cells. During thymocyte development, the nuclear expression of NFATc1 reaches the highest level at the DN3 (CD44-CD25+) stage. The hematopoietic cell-specific ablation of NFATc1 activity results in an arrest of thymocyte differentiation at the DN1 (CD44+CD25-) stage. On the other hand, over-expression of a constitutively active version of NFATc1 results in an impaired transition of DN3 cells to the DN4 (CD44-CD25-) stage, suggesting that a certain threshold level of NFATc1 activity is critical at this point. ChIP-seq and RNA-seq analysis allowed us the identification of NFATc1/A target genes involved in lineage development as the Tcra and Tcrb gene loci. Furthermore, we identified multiple NFATc1-regulated genes that are involved in γδ T cell development. In the mouse models, Rag1Cre-Nfatc1fl/fl and Rag1Cre-E2fl/fl, in which the activity of NFATc1 or inducible NFATc1 in the latter is impaired during the early stages of thymocyte development, we observed increased numbers of γδ T cells. These γδ T cells showed an unusual overexpression of CD4, a lack of CD24 expression, and overexpression of the anti-apoptotic gene Bcl2a1a. We hypothesize that during the DN stages NFATc1 plays an important role in regulating crucial steps of αβ thymocyte development and when NFATc1 activity is missing this may disturb αβ development resulting in alternative cell fates like γδ T cells.}, subject = {Thymocytes}, language = {en} } @phdthesis{Koenig2022, author = {K{\"o}nig, Anika}, title = {The role of the transcriptional regulators NFATc1 and Blimp-1 in follicular T-cells}, doi = {10.25972/OPUS-20972}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-209727}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The defense against invading pathogens is, amongst other things, mediated via the action of antibodies. Class-switched antibodies and antibodies of high affinity are produced by plasma cells descending from germinal center B (GCB) cells. GCB cells develop in the germinal center (GC), a specialized microstructure found in the B-cell follicle of secondary lymphoid organs. GCB-cell maturation and proliferation are supported by follicular T- helper (Tfh) cells. On the other hand, follicular regulatory T (Tfr) cells control this process in quantity and quality preventing, for instance, the formation of autoantibodies directed against endogenous structures. The development of GCB, Tfh and Tfr cells essentially depends on the migration into the GC, which is mediated via the expression of the chemokine receptor CXCR5. One transcription factor highly expressed in follicular T cells, comprising Tfh and Tfr cells, is NFATc1. Tfr cells additionally express the transcriptional repressor Blimp-1, which is not expressed in Tfh cells. We found that NFATc1 is transactivating Cxcr5 via response elements in the promoter and enhancer in vitro. Blimp-1 binds to the same elements, transactivating Cxcr5 expression in cooperation with NFATc1, whilst mediating Cxcr5- repression on its own. In Tfr cells Blimp-1 suppresses CXCR5 expression in the absence of NFATc1. Blimp-1 itself is necessary to restrict Tfr-cell frequencies and to mediate Tfr- cell function as in mice with Blimp-1-ablated Tregs high frequencies of Tfr cells do not reduce GCB- or Tfh cell frequencies. NFATc1 and Blimp-1 double deficient Tfr cells show additional loss of function, which becomes visible in clearly expanded antibody titers. To evaluate the function of NFATc1 in Tfr cells, we not only deleted it, but also overexpressed a constitutive active form of NFATc1/aA (caNFATc1/aA) in regulatory T cells (Tregs). The latter is leading to an upregulation of CXCR5 per cell, without changing Tfh or Tfr-cell frequencies. However, the high density of surface CXCR5 enhances the migration of Tfr cells deep into the GC, which results in a tighter control of the antigen- specific humoral immune response. Additionally, caNFATc1/aA increases the expression of genes coding for Tfr effector molecules like Il1rn, Il10, Tigit and Ctla4. Interestingly, this part of the transcriptional change is dependent on the presence of Blimp-1. Furthermore, Blimp-1 regulates the expression of multiple chemokine receptor genes on the background of caNFATc1/aA. In contrast, when caNFATc1/aA is overexpressed in all T cells, the frequencies of Tfh- and GCB cells are dominantly reduced. This effect seems to stem from the conventional T- cell (Tcon) side, most probably originating from increased secretion of interleukin-2 (IL- 2) via the caNFATc1/aA overexpressing Tcons. IL-2 is known to hinder the germinal center reaction (GCR) and it might in its abundance not be neutralizable by Tfr cells. Taken together, NFATc1 and Blimp-1 cooperate to control the migration of Tfr cells into the GC. Tfr cells in the GC depend on NFATc1 and Blimp-1 to perform their proper function. Overexpression of caNFATc1 in Tregs strengthens Tfr function in a Blimp-1-dependent manner, whilst overexpression of caNFATc1 in all T cells dominantly diminishes the GCR.}, subject = {Signaltransduktion}, language = {en} } @article{MuhammadRudolfPhametal.2018, author = {Muhammad, Khalid and Rudolf, Ronald and Pham, Duong Anh Thuy and Klein-Hessling, Stefan and Takata, Katsuyoshi and Matsushita, Nobuko and Ellenrieder, Volker and Kondo, Eisaku and  Serfling, Edgar}, title = {Induction of Short NFATc1/αA Isoform Interferes with Peripheral B Cell Differentiation}, series = {Frontiers in Immunology}, volume = {9}, journal = {Frontiers in Immunology}, number = {32}, issn = {1664-3224}, doi = {10.3389/fimmu.2018.00032}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197501}, year = {2018}, abstract = {In lymphocytes, immune receptor signals induce the rapid nuclear translocation of preformed cytosolic NFAT proteins. Along with co-stimulatory signals, persistent immune receptor signals lead to high levels of NFATc1/αA, a short NFATc1 isoform, in effector lymphocytes. Whereas NFATc1 is not expressed in plasma cells, in germinal centers numerous centrocytic B cells express nuclear NFATc1/αA. When overexpressed in chicken DT40 B cells or murine WEHI 231 B cells, NFATc1/αA suppressed their cell death induced by B cell receptor signals and affected the expression of genes controlling the germinal center reaction and plasma cell formation. Among those is the Prdm1 gene encoding Blimp-1, a key factor of plasma cell formation. By binding to a regulatory DNA element within exon 1 of the Prdm1 gene, NFATc1/αA suppresses Blimp-1 expression. Since expression of a constitutive active version of NFATc1/αA interfered with Prdm1 RNA expression, LPS-mediated differentiation of splenic B cells to plasmablasts in vitro and reduced immunoglobulin production in vivo, one may conclude that NFATc1/αA plays an important role in controlling plasmablast/plasma cell formation.}, language = {en} } @article{BellLenhartRosenwaldetal.2020, author = {Bell, Luisa and Lenhart, Alexander and Rosenwald, Andreas and Monoranu, Camelia M. and Berberich-Siebelt, Friederike}, title = {Lymphoid aggregates in the CNS of progressive multiple sclerosis patients lack regulatory T cells}, series = {Frontiers in Immunology}, volume = {10}, journal = {Frontiers in Immunology}, number = {3090}, issn = {1664-3224}, doi = {10.3389/fimmu.2019.03090}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-198130}, year = {2020}, abstract = {In gray matter pathology of multiple sclerosis, neurodegeneration associates with a high degree of meningeal inflammatory activity. Importantly, ectopic lymphoid follicles (eLFs) were identified at the inflamed meninges of patients with progressive multiple sclerosis. Besides T lymphocytes, they comprise B cells and might elicit germinal center (GC)-like reactions. GC reactions are controlled by FOXP3+ T-follicular regulatory cells (TFR), but it is unknown if they participate in autoantibody production in eLFs. Receiving human post-mortem material, gathered from autopsies of progressive multiple sclerosis patients, indeed, distinct inflammatory infiltrates enriched with B cells could be detected in perivascular areas and deep sulci. CD35+ cells, parafollicular CD138+ plasma cells, and abundant expression of the homing receptor for GCs, CXCR5, on lymphocytes defined some of them as eLFs. However, they resembled GCs only in varying extent, as T cells did not express PD-1, only few cells were positive for the key transcriptional regulator BCL-6 and ongoing proliferation, whereas a substantial number of T cells expressed high NFATc1 like GC-follicular T cells. Then again, predominant cytoplasmic NFATc1 and an enrichment with CD3+CD27+ memory and CD4+CD69+ tissue-resident cells implied a chronic state, very much in line with PD-1 and BCL-6 downregulation. Intriguingly, FOXP3+ cells were almost absent in the whole brain sections and CD3+FOXP3+ TFRs were never found in the lymphoid aggregates. This also points to less controlled humoral immune responses in those lymphoid aggregates possibly enabling the occurrence of CNS-specific autoantibodies in multiple sclerosis patients.}, language = {en} } @article{KleinHesslingMuhammadKleinetal.2017, author = {Klein-Hessling, Stefan and Muhammad, Khalid and Klein, Matthias and Pusch, Tobias and Rudolf, Ronald and Fl{\"o}ter, Jessica and Qureischi, Musga and Beilhack, Andreas and Vaeth, Martin and Kummerow, Carsten and Backes, Christian and Schoppmeyer, Rouven and Hahn, Ulrike and Hoth, Markus and Bopp, Tobias and Berberich-Siebelt, Friederike and Patra, Amiya and Avots, Andris and M{\"u}ller, Nora and Schulze, Almut and Serfling, Edgar}, title = {NFATc1 controls the cytotoxicity of CD8\(^{+}\) T cells}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, number = {511}, doi = {10.1038/s41467-017-00612-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170353}, year = {2017}, abstract = {Cytotoxic T lymphocytes are effector CD8\(^{+}\) T cells that eradicate infected and malignant cells. Here we show that the transcription factor NFATc1 controls the cytotoxicity of mouse cytotoxic T lymphocytes. Activation of Nfatc1\(^{-/-}\) cytotoxic T lymphocytes showed a defective cytoskeleton organization and recruitment of cytosolic organelles to immunological synapses. These cells have reduced cytotoxicity against tumor cells, and mice with NFATc1-deficient T cells are defective in controlling Listeria infection. Transcriptome analysis shows diminished RNA levels of numerous genes in Nfatc1\(^{-/-}\) CD8\(^{+}\) T cells, including Tbx21, Gzmb and genes encoding cytokines and chemokines, and genes controlling glycolysis. Nfatc1\(^{-/-}\), but not Nfatc2\(^{-/-}\) CD8\(^{+}\) T cells have an impaired metabolic switch to glycolysis, which can be restored by IL-2. Genome-wide ChIP-seq shows that NFATc1 binds many genes that control cytotoxic T lymphocyte activity. Together these data indicate that NFATc1 is an important regulator of cytotoxic T lymphocyte effector functions.}, language = {en} } @phdthesis{Fender2015, author = {Fender, Hendrik Eike}, title = {NFATc1 as a Therapeutic Target in Burkitt's Lymphoma}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133098}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Burkitt's lymphoma (BL) is a very aggressive, germinal center-derived B cell lymphoma. It mostly occurs in children from equatorial Africa who carry both the Epstein-Barr virus and the pathogens for malaria. Aside from this endemic form, there are also sporadic and immunosuppressive forms of BL. The most important characteristics are both the "starry sky" macrophages - from a histological point of view - and the translocation of MYC to one of the immunoglobulin enhancers at the molecular level. In addition to MYC overexpression several mutations, e.g. in p53 or cyclin D3, or constitutive active PI3-kinase signaling contribute to lymphoma genesis. Furthermore, NFAT factors seem also to play a crucial role. In human BL cell lines and murine Myc-driven tumors, the pro survival factor NFATc1 is highly expressed and present in the nuclei. To interfere with the NFAT pathway in lymphoma formation, I tested the "classical" way by inhibition of calcineurin (CN) with CsA, FK506 or VIVIT. Surprisingly, CN inhibition was not sufficient to induce a complete cytoplasmic translocation of NFATc1. Furthermore, CN inhibitors affected cellular survival and proliferation only at atypical high concentrations. Investigation of other pathways, like the PI3-kinase or JAK3, excluded the possibility that they promote NFATc1 activity. Finally, I treated NFATc1 over-expressing BL and pancreatic cancer cell lines with gallium nitrate that turned out to be a very potent inhibitor of cell survival. Gallium nitrate suppressed NFATc1 and MYC transcription though protein stability was not affected. Regarding the regulation of NFATc1 by MYC-overexpression, the data obtained in my work suggested that (1) NFATc1 mRNA level is down-regulated in murine cells, (2) NFATc1 protein level is up-regulated in both human and murine cells, and (3) MYC supports NFATc1's nuclear residence. Finally, I discovered Myc-driven tumor cells as potential "starry sky" macrophages. Under certain conditions, mainly concerning calcium signaling, they change their outward appearance, surface marker expression, and gain the ability for phagocytosis. For the future, the discovery that gallium acts through NFATc1 in BL and probably numerous other cancer types opens up new strategies for therapeutic interventions.}, subject = {Burkitt}, language = {en} } @phdthesis{Murti2014, author = {Murti, Krisna}, title = {The Role of NFATc1 in Burkitt Lymphoma and in Eµ-Myc induced B cell Lymphoma}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-106448}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Burkitt lymphoma (BL) is a highly aggressive B cell malignancy. Rituximab, a humanized antibody against CD20, in a combination with chemotherapy is a current treatment of choice for B-cell lymphomas including BL. However, certain group of BL patients are resistant to Rituximab therapy. Therefore, alternative treatments targeting survival pathways of BL are needed. In BL deregulation of MYC expression, together with additional mutations, inhibits differentiation of germinal centre (GC) B cells and drives proliferation of tumor cells. Pro-apoptotic properties of MYC are counteracted through the B-cell receptor (BCR) and phosphoinositide-3-kinase (PI3K) pathway to ensure survival of BL cells. In normal B-cells BCR triggering activates both NF-κB and NFAT-dependent survival signals. Since BL cells do not exhibit constitutive NF-κB activity, we hypothesized that anti-apoptotic NFATc1A isoform might provide a major survival signal for BL cells. We show that NFATc1 is constitutively expressed in nuclei of BL, in BL cell lines and in Eµ-Myc-induced B cell lymphoma (BCL) cells. Nuclear residence of NFATc1 in these entities depends on intracellular Ca2+ levels but is largely insensitive to cyclosporine A (CsA) treatment and therefore independent from calcineurine (CN) activity. The protein/protein interaction between the regulatory domain of NFATc1 and DNA binding domain of BCL6 likely contributes to sustained nuclear residence of NFATc1 and to the regulation of proposed NFATc1-MYC-BCL6-PRDM1 network in B-cell lymphomas. Our data revealed lack of strict correlation between the expression of six NFATc1 isoforms in different BL-related entities suggesting that both NFATc1/alphaA and -betaA isoforms provide survival functions and that NFATc1alpha/betaB and -alpha/betaC isoforms either do not possess pro-apoptotic properties in BL cells or these properties are counterbalanced. In addition, we show that in BL entities expression of NFATc1 protein is largely regulated at post-transcriptional level, including MYC dependent increase of protein stability. Functionally we show that conditional inactivation of Nfatc1 gene in Eµ-Myc mice prevents development of BCL tumors with mature B cell immunophenotype (IgD+). Loss of NFATc1 expression in BCL cells ex vivo results in apoptosis of tumor cells. Together our results identify NFATc1 as an important survival factor in BL cells and, hence, as a promising target for alternative therapeutic strategies for BL.}, subject = {Transkriptionsfaktor}, language = {en} } @phdthesis{Busch2013, author = {Busch, Rhoda}, title = {Redundancy and indispensability of NFATc1-isoforms in the adaptive and innate immune system}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-91096}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Peritonitis is a common disease in man, frequently caused by fungi, such as Candida albicans; however, in seldom cases opportunistic infections with Saccharomyces cerevisiae are described. Resident peritoneal macrophages (prMΦ) are the major group of phagocytic cells in the peritoneum. They express a broad range of surface pattern recognition receptors (PRR) to recognize invaders. Yeast infections are primarily detected by the Dectin-1 receptor, which triggers activation of NFAT and NF-κB pathways. The transcription of the Nfatc1 gene is directed by the two alternative promoters, inducible P1 and relatively constitutive P2 promoter. While the role of P1-directed NFATc1α-isoforms to promote survival and proliferation of activated lymphocytes is well-established, the relevance of constitutively generated NFATc1β-isoforms, mainly expressed in resting lymphocytes, myeloid and non-lymphoid cells, remains unclear. Moreover, former work at our department indicated different roles for NFATc1α- and NFATc1β-proteins in lymphocytes. Our data revealed the functional role of NFATc1 in peritoneal resident macrophages. We demonstrated that the expression of NFATc1β is required for a proper immune response of prMΦ during fungal infection-induced acute peritonitis. We identified Ccl2, a major chemokine produced in response to fungal infections by prMΦ, as a novel NFATc1 target gene which is cooperatively regulated through the NFAT- and canonical NF-κB pathways. Consequently, we showed that NFATc1β deficiency in prMΦ results in a decreased infiltration of inflammatory monocytes, leading to a delayed clearance of peritoneal fungal infection. We could further show that the expression of NFATc1β-isoforms is irrelevant for homeostasis of myeloid and adaptive immune system cells and that NFATc1α- (but not β-) isoforms are required for a normal development of peritoneal B1a cells. In contrast to the situation in myeloid cells, NFATc1β deficiency is compensated by increased expression of NFATc1α-isoforms in lymphoid cells. As a consequence, NFATc1ß is dispensable for activation of the adaptive immune system. Taken together our results illustrate the redundancy and indispensability of NFATc1-isoforms in the adaptive and innate immune system, indicating a complex regulatory system for Nfatc1 gene expression in different compartments of the immune system and likely beyond that.}, subject = {Immunsystem}, language = {en} }