@phdthesis{CalderonGiraldo2022, author = {Calder{\´o}n Giraldo, Jeniffer}, title = {Analysis of estrogen profiles including methoxyestrogen glucuronides: method validation and applicability to human plasma and breast tissue}, doi = {10.25972/OPUS-20939}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-209396}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Estrogens, namely 17β-estradiol (E2) and estrone (E1) are considered to play an important role in the initiation and promotion of breast cancer (summarized in Raftogianis et al., 2000), a malignancy responsible for around 500,000 deaths per year (summarized in Ghislain et al., 2016). Two major mechanisms have been postulated to explain the carcinogenic effects of estrogens: (1) the estrogen receptor-mediated stimulation of breast cell proliferation with a concomitant enhanced rate of mutations and (2) the metabolism of hydroxylated estrogens to quinone derivatives which can react with the DNA (Russo and Russo, 2006, summarized in Yager and Davidson, 2006). Nevertheless, as a detoxifying mechanism, E1, E2, and their hydroxylated and methoxylated metabolites are reversibly conjugated into sulfates and glucuronides devoid of biological activity (summarized in Guillemette et al., 2004). Yet, despite the key detoxifying function of these conjugates, the study of their circulating levels face some significant problems: (1) analysis by techniques such as radioimmunoassay lack specificity and accuracy and requires enzymatic/chemical hydrolysis before analysis, being unable to differentiate between sulfates and glucuronides (summarized in Stanczyk et al., 2007, summarized in Wang et al., 2016), (2) very little knowledge in healthy women, which has been identified as a barrier to advance in breast cancer research (summarized in Liu, 2000), and (3) far fewer studies in pre- than in postmenopausal women (summarized in Samavat and Kurzer, 2015). Therefore, to get more insights into the research of breast cancer etiology and prevention, the analysis of circulating levels of estrogens (including metabolites and conjugates) in women without breast cancer through reliable analytical techniques, is required.}, language = {en} } @article{ScherzadMeyerIckrathetal.2019, author = {Scherzad, Agmal and Meyer, Till and Ickrath, Pascal and Gehrke, Thomas Eckhart and Bregenzer, Maximillian and Hagen, Rudolf and Dembski, Sofia and Hackenberg, Stephan}, title = {Cultivation of hMSCs in human plasma prevents the cytotoxic and genotoxic potential of ZnO-NP in vitro}, series = {Applied Sciences}, volume = {9}, journal = {Applied Sciences}, number = {23}, issn = {2076-3417}, doi = {10.3390/app9234994}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193063}, year = {2019}, abstract = {Zinc oxide nanoparticles (ZnO-NPs) are commonly used for industrial applications. Consequently, there is increasing exposure of humans to them. The in vitro analysis of cytotoxicity and genotoxicity is commonly performed under standard cell culture conditions. Thus, the question arises of how the results of genotoxicity and cytotoxicity experiments would alter if human plasma was used instead of cell culture medium containing of fetal calf serum (FCS). Human mesenchymal stem cells (hMSCs) were cultured in human plasma and exposed to ZnO-NPs. A cultivation in expansion medium made of DMEM consisting 10\% FCS (DMEM-EM) served as control. Genotoxic and cytotoxic effects were evaluated with the comet and MTT assay, respectively. hMSC differentiation capacity and ZnO-NP disposition were evaluated by histology and transmission electron microscopy (TEM). The protein concentration and the amount of soluble Zn2+ were measured. The cultivation of hMSCs in plasma leads to an attenuation of genotoxic and cytotoxic effects of ZnO-NPs compared to control. The differentiation capacity of hMSCs was not altered. The TEM showed ZnO-NP persistence in cytoplasm in both groups. The concentrations of protein and Zn2+ were higher in plasma than in DMEM-EM. In conclusion, the cultivation of hMSCs in plasma compared to DMEM-EM leads to an attenuation of cytotoxicity and genotoxicity in vitro.}, language = {en} }