@phdthesis{Karwen2024, author = {Karwen, Till}, title = {Platelets promote insulin secretion of pancreatic β-cells}, doi = {10.25972/OPUS-31393}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313933}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The pancreas is the key organ for the maintenance of euglycemia. This is regulated in particular by α-cell-derived glucagon and β-cell-derived insulin, which are released in response to nutrient deficiency and elevated glucose levels, respectively. Although glucose is the main regulator of insulin secretion, it is significantly enhanced by various potentiators. Platelets are anucleate cell fragments in the bloodstream that are essential for hemostasis to prevent and stop bleeding events. Besides their classical role, platelets were implemented to be crucial for other physiological and pathophysiological processes, such as cancer progression, immune defense, and angiogenesis. Platelets from diabetic patients often present increased reactivity and basal activation. Interestingly, platelets store and release several substances that have been reported to potentiate insulin secretion by β-cells. For these reasons, the impact of platelets on β-cell functioning was investigated in this thesis. Here it was shown that both glucose and a β-cell-derived substance/s promote platelet activation and binding to collagen. Additionally, platelet adhesion specifically to the microvasculature of pancreatic islets was revealed, supporting the hypothesis of their influence on glucose homeostasis. Genetic or pharmacological ablation of platelet functioning and platelet depletion consistently resulted in reduced insulin secretion and associated glucose intolerance. Further, the platelet-derived lipid fraction was found to enhance glucose-stimulated insulin secretion, with 20-hydroxyeicosatetraenoic acid (20-HETE) and possibly also lyso-precursor of platelet-activating factor (lysoPAF) being identified as crucial factors. However, the acute platelet-stimulated insulin secretion was found to decline with age, as did the levels of platelet-derived 20-HETE. In addition to their direct stimulatory effect on insulin secretion, specific defects in platelet activation have also been shown to affect glucose homeostasis by potentially influencing islet vascular development. Taking together, the results of this thesis suggest a direct and indirect mechanism of platelets in the regulation of insulin secretion that ensures glucose homeostasis, especially in young individuals.}, subject = {Thrombozyt}, language = {en} } @article{KooMatthewsHarrisonetal.2022, author = {Koo, Chek Ziu and Matthews, Alexandra L. and Harrison, Neale and Szyroka, Justyna and Nieswandt, Bernhard and Gardiner, Elizabeth E. and Poulter, Natalie S. and Tomlinson, Michael G.}, title = {The platelet collagen receptor GPVI is cleaved by Tspan15/ADAM10 and Tspan33/ADAM10 molecular scissors}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {5}, issn = {1422-0067}, doi = {10.3390/ijms23052440}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284468}, year = {2022}, abstract = {The platelet-activating collagen receptor GPVI represents the focus of clinical trials as an antiplatelet target for arterial thrombosis, and soluble GPVI is a plasma biomarker for several human diseases. A disintegrin and metalloproteinase 10 (ADAM10) acts as a 'molecular scissor' that cleaves the extracellular region from GPVI and many other substrates. ADAM10 interacts with six regulatory tetraspanin membrane proteins, Tspan5, Tspan10, Tspan14, Tspan15, Tspan17 and Tspan33, which are collectively termed the TspanC8s. These are emerging as regulators of ADAM10 substrate specificity. Human platelets express Tspan14, Tspan15 and Tspan33, but which of these regulates GPVI cleavage remains unknown. To address this, CRISPR/Cas9 knockout human cell lines were generated to show that Tspan15 and Tspan33 enact compensatory roles in GPVI cleavage, with Tspan15 bearing the more important role. To investigate this mechanism, a series of Tspan15 and GPVI mutant expression constructs were designed. The Tspan15 extracellular region was found to be critical in promoting GPVI cleavage, and appeared to achieve this by enabling ADAM10 to access the cleavage site at a particular distance above the membrane. These findings bear implications for the regulation of cleavage of other ADAM10 substrates, and provide new insights into post-translational regulation of the clinically relevant GPVI protein.}, language = {en} } @article{PerrellaMontagueBrownetal.2022, author = {Perrella, Gina and Montague, Samantha J. and Brown, Helena C. and Garcia Quintanilla, Lourdes and Slater, Alexandre and Stegner, David and Thomas, Mark and Heemskerk, Johan W. M. and Watson, Steve P.}, title = {Role of tyrosine kinase Syk in thrombus stabilisation at high shear}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {1}, issn = {1422-0067}, doi = {10.3390/ijms23010493}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284243}, year = {2022}, abstract = {Understanding the pathways involved in the formation and stability of the core and shell regions of a platelet-rich arterial thrombus may result in new ways to treat arterial thrombosis. The distinguishing feature between these two regions is the absence of fibrin in the shell which indicates that in vitro flow-based assays over thrombogenic surfaces, in the absence of coagulation, can be used to resemble this region. In this study, we have investigated the contribution of Syk tyrosine kinase in the stability of platelet aggregates (or thrombi) formed on collagen or atherosclerotic plaque homogenate at arterial shear (1000 s\(^{-1}\)). We show that post-perfusion of the Syk inhibitor PRT-060318 over preformed thrombi on both surfaces enhances thrombus breakdown and platelet detachment. The resulting loss of thrombus stability led to a reduction in thrombus contractile score which could be detected as early as 3 min after perfusion of the Syk inhibitor. A similar loss of thrombus stability was observed with ticagrelor and indomethacin, inhibitors of platelet adenosine diphosphate (ADP) receptor and thromboxane A\(_2\) (TxA\(_2\)), respectively, and in the presence of the Src inhibitor, dasatinib. In contrast, the Btk inhibitor, ibrutinib, causes only a minor decrease in thrombus contractile score. Weak thrombus breakdown is also seen with the blocking GPVI nanobody, Nb21, which indicates, at best, a minor contribution of collagen to the stability of the platelet aggregate. These results show that Syk regulates thrombus stability in the absence of fibrin in human platelets under flow and provide evidence that this involves pathways additional to activation of GPVI by collagen.}, language = {en} } @phdthesis{Reil2023, author = {Reil, Lucy Honor}, title = {The role of WASH complex subunit Strumpellin in platelet function}, doi = {10.25972/OPUS-24207}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242077}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Strumpellin is a member of the highly conserved pentameric WASH complex, which stimulates the Arp2/3 complex on endosomes and induces the formation of a branched actin network. The WASH complex is involved in the formation and stabilisation of endosomal retrieval subdomains and transport carriers, into which selected proteins are packaged and subsequently transported to their respective cellular destination, e.g. the plasma membrane. Up until now, the role of Strumpellin in platelet function and endosomal trafficking has not been researched. In order to examine its role, a conditional knockout mouse line was generated, which specifically lacked Strumpellin in megakaryocytes and platelets. Conditional knockout of Strumpellin resulted in only a mild platelet phenotype. Loss of Strumpellin led to a decreased abundance of the αIIbβ3 integrin in platelets, including a reduced αIIbβ3 surface expression by approximately 20\% and an impaired αIIbβ3 activation after platelet activation. The reduced surface expression of αIIbβ3 was also detected in megakaryocytes. The expression of other platelet surface glycoproteins was not affected. Platelet count, size and morphology remained unaltered. The reduction of αIIbβ3 expression in platelets resulted in a reduced fibrinogen binding capacity after platelet activation. However, fibrinogen uptake under resting conditions, although slightly delayed, as well as overall fibrinogen content in Strumpellin-deficient platelets were comparable to controls. Most notably, reduced αIIbβ3 expression did not lead to any platelet spreading and aggregation defects in vitro. Furthermore, reduced WASH1 protein levels were detected in the absence of Strumpellin. In conclusion, loss of Strumpellin does not impair platelet function, at least not in vitro. However, the data demonstrates that Strumpellin plays a role in selectively regulating αIIbβ3 surface expression. As a member of the WASH complex, Strumpellin may regulate αIIbβ3 recycling back to the platelet surface. Furthermore, residual WASH complex subunits may still assemble and partially function in the absence of Strumpellin, which could explain the only 20\% decrease in αIIbβ3 surface expression. Nonetheless, the exact mechanism still remains unclear.}, language = {en} } @article{LauknerTruchetManukjanetal.2021, author = {Laukner, Anna and Truchet, Laura and Manukjan, Georgi and Schulze, Harald and Langbein-Detsch, Ines and Mueller, Elisabeth and Leeb, Tosso and Kehl, Alexandra}, title = {Effects of cocoa genotypes on coat color, platelets and coagulation parameters in French Bulldogs}, series = {Genes}, volume = {12}, journal = {Genes}, number = {7}, issn = {2073-4425}, doi = {10.3390/genes12071092}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242745}, year = {2021}, abstract = {A nonsense variant in HPS3, c.2420G>A or p.Trp807*, was recently discovered as the cause for a brown coat color termed cocoa in French Bulldogs. Here, we studied the genotype-phenotype correlation regarding coat color in HPS3 mutant dogs that carried various combinations of mutant alleles at other coat color genes. Different combinations of HPS3, MLPH and TYRP1 genotypes resulted in subtly different shades of brown coat colors. As HPS3 variants in humans cause the Hermansky-Pudlak syndrome type 3, which in addition to oculocutaneous albinism is characterized by a storage pool deficiency leading to bleeding tendency, we also investigated the phenotypic consequences of the HPS3 variant in French Bulldogs on hematological parameters. HPS3 mutant dogs had a significantly lowered platelet dense granules abundance. However, no increased bleeding tendencies in daily routine were reported by dog owners. We therefore conclude that in dogs, the phenotypic effect of the HPS3 variant is largely restricted to pigmentation. While an effect on platelet morphology is evident, we did not obtain any indications for major health problems associated with the cocoa coat color in French Bulldogs. Further studies will be necessary to definitely rule out very subtle effects on visual acuity or a clinically relevant bleeding disorder.}, language = {en} } @article{BalkenholKaltdorfMammadovaBachetal.2020, author = {Balkenhol, Johannes and Kaltdorf, Kristin V. and Mammadova-Bach, Elmina and Braun, Attila and Nieswandt, Bernhard and Dittrich, Marcus and Dandekar, Thomas}, title = {Comparison of the central human and mouse platelet signaling cascade by systems biological analysis}, series = {BMC Genomics}, volume = {21}, journal = {BMC Genomics}, doi = {10.1186/s12864-020-07215-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230377}, year = {2020}, abstract = {Background Understanding the molecular mechanisms of platelet activation and aggregation is of high interest for basic and clinical hemostasis and thrombosis research. The central platelet protein interaction network is involved in major responses to exogenous factors. This is defined by systemsbiological pathway analysis as the central regulating signaling cascade of platelets (CC). Results The CC is systematically compared here between mouse and human and major differences were found. Genetic differences were analysed comparing orthologous human and mouse genes. We next analyzed different expression levels of mRNAs. Considering 4 mouse and 7 human high-quality proteome data sets, we identified then those major mRNA expression differences (81\%) which were supported by proteome data. CC is conserved regarding genetic completeness, but we observed major differences in mRNA and protein levels between both species. Looking at central interactors, human PLCB2, MMP9, BDNF, ITPR3 and SLC25A6 (always Entrez notation) show absence in all murine datasets. CC interactors GNG12, PRKCE and ADCY9 occur only in mice. Looking at the common proteins, TLN1, CALM3, PRKCB, APP, SOD2 and TIMP1 are higher abundant in human, whereas RASGRP2, ITGB2, MYL9, EIF4EBP1, ADAM17, ARRB2, CD9 and ZYX are higher abundant in mouse. Pivotal kinase SRC shows different regulation on mRNA and protein level as well as ADP receptor P2RY12. Conclusions Our results highlight species-specific differences in platelet signaling and points of specific fine-tuning in human platelets as well as murine-specific signaling differences.}, language = {en} } @article{RommelMildeEberleetal.2020, author = {Rommel, Marcel G. E. and Milde, Christian and Eberle, Regina and Schulze, Harald and Modlich, Ute}, title = {Endothelial-platelet interactions in influenza-induced pneumonia: A potential therapeutic target}, series = {Anatomia, Histologia, Embryologia}, volume = {49}, journal = {Anatomia, Histologia, Embryologia}, number = {5}, doi = {10.1111/ahe.12521}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213610}, pages = {606 -- 619}, year = {2020}, abstract = {Every year, influenza viruses spread around the world, infecting the respiratory systems of countless humans and animals, causing illness and even death. Severe influenza infection is associated with pulmonary epithelial damage and endothelial dysfunction leading to acute lung injury (ALI). There is evidence that an aggressive cytokine storm and cell damage in lung capillaries as well as endothelial/platelet interactions contribute to vascular leakage, pro-thrombotic milieu and infiltration of immune effector cells. To date, treatments for ALI caused by influenza are limited to antiviral drugs, active ventilation or further symptomatic treatments. In this review, we summarize the mechanisms of influenza-mediated pathogenesis, permissive animal models and histopathological changes of lung tissue in both mice and men and compare it with histological and electron microscopic data from our own group. We highlight the molecular and cellular interactions between pulmonary endothelium and platelets in homeostasis and influenza-induced pathogenesis. Finally, we discuss novel therapeutic targets on platelets/endothelial interaction to reduce or resolve ALI.}, language = {en} } @phdthesis{Spindler2020, author = {Spindler, Markus}, title = {The role of the adhesion and degranulation promoting adapter protein (ADAP) in platelet production}, doi = {10.25972/OPUS-20097}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200977}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Bone marrow (BM) megakaryocytes (MKs) produce platelets by extending proplatelets into sinusoidal blood vessels. Although this process is fundamental to maintain normal platelet counts in circulation only little is known about the regulation of directed proplatelet formation. As revealed in this thesis, ADAP (adhesion and degranulation promoting adapter protein) deficiency (constitutive as well as MK and platelet-specific) resulted in a microthrombocytopenia in mice, recapitulating the clinical hallmark of patients with mutations in the ADAP gene. The thrombocytopenia was caused by a combination of an enhanced removal of platelets from the circulation by macrophages and a platelet production defect. This defect led to an ectopic release of (pro)platelet-like particles into the bone marrow compartment, with a massive accumulation of such fragments around sinusoids. In vitro studies of cultured BM cell-derived MKs revealed a polarization defect of the demarcation membrane system, which is dependent on F-actin dynamics. ADAP-deficient MKs spread on collagen and fibronectin displayed a reduced F-actin content and podosome density in the lowest confocal plane. In addition, ADAP-deficient MKs exhibited a reduced capacity to adhere on Horm collagen and in line with that the activation of beta1-integrins in the lowest confocal plane of spread MKs was diminished. These results point to ADAP as a novel regulator of terminal platelet formation. Beside ADAP-deficient mice, three other knockout mouse models (deficiency for profilin1 (PFN1), Wiskott-Aldrich-syndrome protein (WASP) and Actin-related protein 2/3 complex subunit 2 (ARPC2)) exist, which display ectopic release of (pro)platelet-like particles. As shown in the final part of the thesis, the pattern of the ectopic release of (pro)platelet-like particles in these genetically modified mice (PFN1 and WASP) was comparable to ADAP-deficient mice. Furthermore, all tested mutant MKs displayed an adhesion defect as well as a reduced podosome density on Horm collagen. These results indicate that similar mechanisms might apply for ectopic release.}, language = {en} } @phdthesis{SchellergebBirkholz2020, author = {Scheller [geb. Birkholz], Inga}, title = {Studies on the role of actin-binding proteins in platelet production and function in mice}, doi = {10.25972/OPUS-16858}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168582}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Platelet activation and aggregation at sites of vascular injury involves massive cytoskeletal re-organization, which is required for proper platelet function. Moreover, the cytoskeleton plays central roles in megakaryo- and thrombopoiesis. Thus, cytoskeletal protein aberrations can be the underlying reason for many pathological phenotypes. Although intensive research is carried out to identify the key players involved in cytoskeletal reorganization, the signaling cascades orchestrating these complex processes are still poorly understood. This thesis investigates the role of three actin-binding proteins, Coactosin-like (Cotl) 1, Profilin (Pfn) 1 and Thymosin (T) β4, in platelet formation and function using genetically modified mice. ADF-H-containing proteins such as Twinfilin or Cofilin are well characterized as regulators of thrombopoesis and cytoskeletal reorganization. Although Cotl1 belongs to the ADF-H protein family, lack of Cotl1 did not affect platelet count or cytoskeletal dynamics. However, Cotl1-deficiency resulted in significant protection from arterial thrombus formation and ischemic stroke in vivo. Defective GPIb-vWF interactions and altered second wave mediator release present potential reasons for the beneficial effect of Cotl1-deficiency. These results reveal an unexpected function of Cotl1 as a regulator of thrombosis and hemostasis, establishing it as a potential target for a safe therapeutic therapy to prevent arterial thrombosis or ischemic stroke. Recent studies showed that the organization of the circumferential actin cytoskeleton modulates calpain-mediated αIIbβ3 integrin closure, thereby also controlling αIIbβ3 integrin localization. The second part of this thesis identified the actin-sequestering protein Pfn1 as a central regulator of platelet integrin function as Pfn1-deficient platelets displayed almost abolished αIIbβ3 integrin signaling. This translated into a profound protection from arterial thrombus formation and prolonged tail bleeding times in vivo which was caused by enhanced calpain-dependent integrin closure. These findings further emphasize the importance of a functional actin cytoskeleton for intact platelet function in vitro and in vivo. Tβ4 is a moonlighting protein, acting as one of the major actin-sequestering proteins in cells of higher eukaryotes and exerting various paracrine functions including anti-inflammatory, immunomodulatory and pro-angiogenic effects. Although excessively studied, its role for cytoskeletal dynamics, the distinction between endo- and exogenous protein function and its uptake and release mechanisms are still poorly understood. Constitutive Tβ4-deficiency resulted in thrombocytopenia accompanied by a largely diminished G-actin pool in platelets and divergent effects on platelet reactivity. Pre-incubation of platelets with recombinant Tβ4 will help to understand the function of endo- and exogenous protein, which is under current investigation.}, subject = {Thrombozyt}, language = {en} } @article{StegnerKlausNieswandt2019, author = {Stegner, David and Klaus, Vanessa and Nieswandt, Bernhard}, title = {Platelets as modulators of cerebral ischemia/reperfusion injury}, series = {Frontiers in Immunology}, volume = {10}, journal = {Frontiers in Immunology}, number = {2505}, issn = {1664-3224}, doi = {10.3389/fimmu.2019.02505}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-195748}, year = {2019}, abstract = {Ischemic stroke is among the leading causes of disability and death worldwide. In acute ischemic stroke, the rapid recanalization of occluded cranial vessels is the primary therapeutic aim. However, experimental data (obtained using mostly the transient middle cerebral artery occlusion model) indicates that progressive stroke can still develop despite successful recanalization, a process termed "reperfusion injury." Mounting experimental evidence suggests that platelets and T cells contribute to cerebral ischemia/reperfusion injury, and ischemic stroke is increasingly considered a thrombo-inflammatory disease. The interaction of von Willebrand factor and its receptor on the platelet surface, glycoprotein Ib, as well as many activatory platelet receptors and platelet degranulation contribute to secondary infarct growth in this setting. In contrast, interference with GPIIb/IIIa-dependent platelet aggregation and thrombus formation does not improve the outcome of acute brain ischemia but dramatically increases the susceptibility to intracranial hemorrhage. Here, we summarize the current understanding of the mechanisms and the potential translational impact of platelet contributions to cerebral ischemia/reperfusion injury.}, language = {en} }