@article{BorojevićJaukovićKukoljetal.2022, author = {Borojević, Ana and Jauković, Aleksandra and Kukolj, Tamara and Mojsilović, Slavko and Obradović, Hristina and Trivanović, Drenka and Živanović, Milena and Zečević, Željko and Simić, Marija and Gobeljić, Borko and Vujić, Dragana and Bugarski, Diana}, title = {Vitamin D3 stimulates proliferation capacity, expression of pluripotency markers, and osteogenesis of human bone marrow mesenchymal stromal/stem cells, partly through SIRT1 signaling}, series = {Biomolecules}, volume = {12}, journal = {Biomolecules}, number = {2}, issn = {2218-273X}, doi = {10.3390/biom12020323}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262203}, year = {2022}, abstract = {The biology of vitamin D3 is well defined, as are the effects of its active metabolites on various cells, including mesenchymal stromal/stem cells (MSCs). However, the biological potential of its precursor, cholecalciferol (VD3), has not been sufficiently investigated, although its significance in regenerative medicine — mainly in combination with various biomaterial matrices — has been recognized. Given that VD3 preconditioning might also contribute to the improvement of cellular regenerative potential, the aim of this study was to investigate its effects on bone marrow (BM) MSC functions and the signaling pathways involved. For that purpose, the influence of VD3 on BM-MSCs obtained from young human donors was determined via MTT test, flow cytometric analysis, immunocytochemistry, and qRT-PCR. Our results revealed that VD3, following a 5-day treatment, stimulated proliferation, expression of pluripotency markers (NANOG, SOX2, and Oct4), and osteogenic differentiation potential in BM-MSCs, while it reduced their senescence. Moreover, increased sirtuin 1 (SIRT1) expression was detected upon treatment with VD3, which mediated VD3-promoted osteogenesis and, partially, the stemness features through NANOG and SOX2 upregulation. In contrast, the effects of VD3 on proliferation, Oct4 expression, and senescence were SIRT1-independent. Altogether, these data indicate that VD3 has strong potential to modulate BM-MSCs' features, partially through SIRT1 signaling, although the precise mechanisms merit further investigation.}, language = {en} } @article{PeindlGoettlichCrouchetal.2022, author = {Peindl, Matthias and G{\"o}ttlich, Claudia and Crouch, Samantha and Hoff, Niklas and L{\"u}ttgens, Tamara and Schmitt, Franziska and Pereira, Jes{\´u}s Guillermo Nieves and May, Celina and Schliermann, Anna and Kronenthaler, Corinna and Cheufou, Danjouma and Reu-Hofer, Simone and Rosenwald, Andreas and Weigl, Elena and Walles, Thorsten and Sch{\"u}ler, Julia and Dandekar, Thomas and Nietzer, Sarah and Dandekar, Gudrun}, title = {EMT, stemness, and drug resistance in biological context: a 3D tumor tissue/in silico platform for analysis of combinatorial treatment in NSCLC with aggressive KRAS-biomarker signatures}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {9}, issn = {2072-6694}, doi = {10.3390/cancers14092176}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270744}, year = {2022}, abstract = {Epithelial-to-mesenchymal transition (EMT) is discussed to be centrally involved in invasion, stemness, and drug resistance. Experimental models to evaluate this process in its biological complexity are limited. To shed light on EMT impact and test drug response more reliably, we use a lung tumor test system based on a decellularized intestinal matrix showing more in vivo-like proliferation levels and enhanced expression of clinical markers and carcinogenesis-related genes. In our models, we found evidence for a correlation of EMT with drug resistance in primary and secondary resistant cells harboring KRAS\(^{G12C}\) or EGFR mutations, which was simulated in silico based on an optimized signaling network topology. Notably, drug resistance did not correlate with EMT status in KRAS-mutated patient-derived xenograft (PDX) cell lines, and drug efficacy was not affected by EMT induction via TGF-β. To investigate further determinants of drug response, we tested several drugs in combination with a KRAS\(^{G12C}\) inhibitor in KRAS\(^{G12C}\) mutant HCC44 models, which, besides EMT, display mutations in P53, LKB1, KEAP1, and high c-MYC expression. We identified an aurora-kinase A (AURKA) inhibitor as the most promising candidate. In our network, AURKA is a centrally linked hub to EMT, proliferation, apoptosis, LKB1, and c-MYC. This exemplifies our systemic analysis approach for clinical translation of biomarker signatures.}, language = {en} } @article{PereiraTrivanovićStahlhutetal.2022, author = {Pereira, Ana Rita and Trivanović, Drenka and Stahlhut, Philipp and Rudert, Maximilian and Groll, J{\"u}rgen and Herrmann, Marietta}, title = {Preservation of the na{\"i}ve features of mesenchymal stromal cells in vitro: Comparison of cell- and bone-derived decellularized extracellular matrix}, series = {Journal of Tissue Engineering}, volume = {13}, journal = {Journal of Tissue Engineering}, doi = {10.1177/20417314221074453}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268835}, pages = {1-12}, year = {2022}, abstract = {The fate and behavior of bone marrow mesenchymal stem/stromal cells (BM-MSC) is bidirectionally influenced by their microenvironment, the stem cell niche, where a magnitude of biochemical and physical cues communicate in an extremely orchestrated way. It is known that simplified 2D in vitro systems for BM-MSC culture do not represent their na{\"i}ve physiological environment. Here, we developed four different 2D cell-based decellularized matrices (dECM) and a 3D decellularized human trabecular-bone scaffold (dBone) to evaluate BM-MSC behavior. The obtained cell-derived matrices provided a reliable tool for cell shape-based analyses of typical features associated with osteogenic differentiation at high-throughput level. On the other hand, exploratory proteomics analysis identified native bone-specific proteins selectively expressed in dBone but not in dECM models. Together with its architectural complexity, the physico-chemical properties of dBone triggered the upregulation of stemness associated genes and niche-related protein expression, proving in vitro conservation of the na{\"i}ve features of BM-MSC.}, language = {en} }