@article{WeistePedrottiSelvanayagametal.2017, author = {Weiste, Christoph and Pedrotti, Lorenzo and Selvanayagam, Jebasingh and Muralidhara, Prathibha and Fr{\"o}schel, Christian and Nov{\´a}k, Ondřej and Ljung, Karin and Hanson, Johannes and Dr{\"o}ge-Laser, Wolfgang}, title = {The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth}, series = {PLoS Genetics}, volume = {13}, journal = {PLoS Genetics}, number = {2}, doi = {10.1371/journal.pgen.1006607}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157742}, pages = {e1006607}, year = {2017}, abstract = {Plants have to tightly control their energy homeostasis to ensure survival and fitness under constantly changing environmental conditions. Thus, it is stringently required that energy-consuming stress-adaptation and growth-related processes are dynamically tuned according to the prevailing energy availability. The evolutionary conserved SUCROSE NON-FERMENTING1 RELATED KINASES1 (SnRK1) and the downstream group C/S\(_{1}\) basic leucine zipper (bZIP) transcription factors (TFs) are well-characterised central players in plants' low-energy management. Nevertheless, mechanistic insights into plant growth control under energy deprived conditions remains largely elusive. In this work, we disclose the novel function of the low-energy activated group S\(_{1}\) bZIP11-related TFs as regulators of auxin-mediated primary root growth. Whereas transgenic gain-of-function approaches of these bZIPs interfere with the activity of the root apical meristem and result in root growth repression, root growth of loss-of-function plants show a pronounced insensitivity to low-energy conditions. Based on ensuing molecular and biochemical analyses, we propose a mechanistic model, in which bZIP11-related TFs gain control over the root meristem by directly activating IAA3/SHY2 transcription. IAA3/SHY2 is a pivotal negative regulator of root growth, which has been demonstrated to efficiently repress transcription of major auxin transport facilitators of the PIN-FORMED (PIN) gene family, thereby restricting polar auxin transport to the root tip and in consequence auxin-driven primary root growth. Taken together, our results disclose the central low-energy activated SnRK1-C/S\(_{1}\)-bZIP signalling module as gateway to integrate information on the plant's energy status into root meristem control, thereby balancing plant growth and cellular energy resources.}, language = {en} } @article{LichtensteinSommerlandtSpaethe2015, author = {Lichtenstein, Leonie and Sommerlandt, Frank M. J. and Spaethe, Johannes}, title = {Dumb and Lazy? A Comparison of Color Learning and Memory Retrieval in Drones and Workers of the Buff-Tailed Bumblebee, Bombus terrestris, by Means of PER Conditioning}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {7}, doi = {10.1371/journal.pone.0134248}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125832}, pages = {e0134248}, year = {2015}, abstract = {More than 100 years ago, Karl von Frisch showed that honeybee workers learn and discriminate colors. Since then, many studies confirmed the color learning capabilities of females from various hymenopteran species. Yet, little is known about visual learning and memory in males despite the fact that in most bee species males must take care of their own needs and must find rewarding flowers to obtain food. Here we used the proboscis extension response (PER) paradigm to study the color learning capacities of workers and drones of the bumblebee, Bombus terrestris. Light stimuli were paired with sucrose reward delivered to the insects' antennae and inducing a reflexive extension of the proboscis. We evaluated color learning (i.e. conditioned PER to color stimuli) in absolute and differential conditioning protocols and mid-term memory retention was measured two hours after conditioning. Different monochromatic light stimuli in combination with neutral density filters were used to ensure that the bumblebees could only use chromatic and not achromatic (e.g. brightness) information. Furthermore, we tested if bees were able to transfer the learned information from the PER conditioning to a novel discrimination task in a Y-maze. Both workers and drones were capable of learning and discriminating between monochromatic light stimuli and retrieved the learned stimulus after two hours. Drones performed as well as workers during conditioning and in the memory test, but failed in the transfer test in contrast to workers. Our data clearly show that bumblebees can learn to associate a color stimulus with a sugar reward in PER conditioning and that both workers and drones reach similar acquisition and mid-term retention performances. Additionally, we provide evidence that only workers transfer the learned information from a Pavlovian to an operant situation.}, language = {en} } @article{PlatteHerbertPaulietal.2013, author = {Platte, Petra and Herbert, Cornelia and Pauli, Paul and Breslin, Paul A. S.}, title = {Oral Perceptions of Fat and Taste Stimuli Are Modulated by Affect and Mood Induction}, series = {PLoS ONE}, journal = {PLoS ONE}, doi = {10.1371/journal.pone.0065006}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96421}, year = {2013}, abstract = {This study examined the impact of three clinical psychological variables (non-pathological levels of depression and anxiety, as well as experimentally manipulated mood) on fat and taste perception in healthy subjects. After a baseline orosensory evaluation, 'sad', 'happy' and 'neutral' video clips were presented to induce corresponding moods in eighty participants. Following mood manipulation, subjects rated five different oral stimuli, appearing sweet, umami, sour, bitter, fatty, which were delivered at five different concentrations each. Depression levels were assessed with Beck's Depression Inventory (BDI) and anxiety levels were assessed via the Spielberger's STAI-trait and state questionnaire. Overall, subjects were able to track the concentrations of the stimuli correctly, yet depression level affected taste ratings. First, depression scores were positively correlated with sucrose ratings. Second, subjects with depression scores above the sample median rated sucrose and quinine as more intense after mood induction (positive, negative and neutral). Third and most important, the group with enhanced depression scores did not rate low and high fat stimuli differently after positive or negative mood induction, whereas, during baseline or during the non-emotional neutral condition they rated the fat intensity as increasing with concentration. Consistent with others' prior observations we also found that sweet and bitter stimuli at baseline were rated as more intense by participants with higher anxiety scores and that after positive and negative mood induction, citric acid was rated as stronger tasting compared to baseline. The observation that subjects with mild subclinical depression rated low and high fat stimuli similarly when in positive or negative mood is novel and likely has potential implications for unhealthy eating patterns. This deficit may foster unconscious eating of fatty foods in sub-clinical mildly depressed populations.}, language = {en} }