@article{MoraisPasechnikPorod2021, author = {Morais, Ant{\´o}nio P. and Pasechnik, Roman and Porod, Werner}, title = {Grand Unified origin of gauge interactions and families replication in the Standard Model}, series = {Universe}, volume = {7}, journal = {Universe}, number = {12}, issn = {2218-1997}, doi = {10.3390/universe7120461}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250237}, year = {2021}, abstract = {The tremendous phenomenological success of the Standard Model (SM) suggests that its flavor structure and gauge interactions may not be arbitrary but should have a fundamental first-principle explanation. In this work, we explore how the basic distinctive properties of the SM dynamically emerge from a unified New Physics framework tying together both flavor physics and Grand Unified Theory (GUT) concepts. This framework is suggested by a novel anomaly-free supersymmetric chiral E\(_6\)×SU(2)\(_F\)×U(1)\(_F\) GUT containing the SM. Among the most appealing emergent properties of this theory is the Higgs-matter unification with a highly-constrained massless chiral sector featuring two universal Yukawa couplings close to the GUT scale. At the electroweak scale, the minimal SM-like effective field theory limit of this GUT represents a specific flavored three-Higgs doublet model consistent with the observed large hierarchies in the quark mass spectra and mixing already at tree level.}, language = {en} }