@article{JanschZieglerForeroetal.2021, author = {Jansch, Charline and Ziegler, Georg C. and Forero, Andrea and Gredy, Sina and W{\"a}ldchen, Sina and Vitale, Maria Rosaria and Svirin, Evgeniy and Z{\"o}ller, Johanna E. M. and Waider, Jonas and G{\"u}nther, Katharina and Edenhofer, Frank and Sauer, Markus and Wischmeyer, Erhard and Lesch, Klaus-Peter}, title = {Serotonin-specific neurons differentiated from human iPSCs form distinct subtypes with synaptic protein assembly}, series = {Journal of Neural Transmission}, volume = {128}, journal = {Journal of Neural Transmission}, number = {2}, issn = {1435-1463}, doi = {10.1007/s00702-021-02303-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268519}, pages = {225-241}, year = {2021}, abstract = {Human induced pluripotent stem cells (hiPSCs) have revolutionized the generation of experimental disease models, but the development of protocols for the differentiation of functionally active neuronal subtypes with defined specification is still in its infancy. While dysfunction of the brain serotonin (5-HT) system has been implicated in the etiology of various neuropsychiatric disorders, investigation of functional human 5-HT specific neurons in vitro has been restricted by technical limitations. We describe an efficient generation of functionally active neurons from hiPSCs displaying 5-HT specification by modification of a previously reported protocol. Furthermore, 5-HT specific neurons were characterized using high-end fluorescence imaging including super-resolution microscopy in combination with electrophysiological techniques. Differentiated hiPSCs synthesize 5-HT, express specific markers, such as tryptophan hydroxylase 2 and 5-HT transporter, and exhibit an electrophysiological signature characteristic of serotonergic neurons, with spontaneous rhythmic activities, broad action potentials and large afterhyperpolarization potentials. 5-HT specific neurons form synapses reflected by the expression of pre- and postsynaptic proteins, such as Bassoon and Homer. The distribution pattern of Bassoon, a marker of the active zone along the soma and extensions of neurons, indicates functionality via volume transmission. Among the high percentage of 5-HT specific neurons (~ 42\%), a subpopulation of CDH13 + cells presumably designates dorsal raphe neurons. hiPSC-derived 5-HT specific neuronal cell cultures reflect the heterogeneous nature of dorsal and median raphe nuclei and may facilitate examining the association of serotonergic neuron subpopulations with neuropsychiatric disorders.}, language = {en} } @article{TretterMukherjeeMaricetal.2012, author = {Tretter, Verena and Mukherjee, Jayanta and Maric, Hans-Michael and Schindelin, Hermann and Sieghart, Werner and Moss, Stephen J.}, title = {Gephyrin, the enigmatic organizer at GABAergic synapses}, series = {Frontiers in Cellular Neuroscience}, volume = {6}, journal = {Frontiers in Cellular Neuroscience}, number = {23}, doi = {10.3389/fncel.2012.00023}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133356}, year = {2012}, abstract = {GABA(A) receptors are clustered at synaptic sites to achieve a high density of postsynaptic receptors opposite the input axonal terminals. This allows for an efficient propagation of GABA mediated signals, which mostly result in neuronal inhibition. A key organizer for inhibitory synaptic receptors is the 93 kDa protein gephyrin that forms oligomeric superstructures beneath the synaptic area. Gephyrin has long been known to be directly associated with glycine receptor beta subunits that mediate synaptic inhibition in the spinal cord. Recently, synaptic GABA(A) receptors have also been shown to directly interact with gephyrin and interaction sites have been identified and mapped within the intracellular loops of the GABA(A) receptor alpha 1, alpha 2, and alpha 3 subunits. Gephyrin-binding to GABA(A) receptors seems to be at least one order of magnitude weaker than to glycine receptors (GlyRs) and most probably is regulated by phosphorylation. Gephyrin not only has a structural function at synaptic sites, but also plays a crucial role in synaptic dynamics and is a platform for multiple protein-protein interactions, bringing receptors, cytoskeletal proteins and downstream signaling proteins into close spatial proximity.}, language = {en} }