@phdthesis{Riegler2022, author = {Riegler, David}, title = {Emergent phenomena in strongly correlated electron systems: Auxiliary particle approach to the many-body problem}, doi = {10.25972/OPUS-27473}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-274737}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Emergent phenomena in condensed matter physics like, e.g., magnetism, superconductivity, or non-trivial topology often come along with a surprise and exert great fascination to researchers up to this day. Within this thesis, we are concerned with the analysis of associated types of order that arise due to strong electronic interactions and focus on the high-\(T_c\) cuprates and Kondo systems as two prime candidates. The underlying many-body problem cannot be solved analytically and has given rise to the development of various approximation techniques to tackle the problem. In concrete terms, we apply the auxiliary particle approach to investigate tight-binding Hamiltonians subject to a Hubbard interaction term to account for the screened Coulomb repulsion. Thereby, we adopt the so-called Kotliar-Ruckenstein slave-boson representation that reduces the problem to non-interacting quasiparticles within a mean-field approximation. Part I provides a pedagogical review of the theory and generalizes the established formalism to encompass Gaussian fluctuations around magnetic ground states as a crucial step to obtaining novel results. Part II addresses the two-dimensional one-band Hubbard model, which is known to approximately describe the physics of the high-\(T_c\) cuprates that feature high-temperature superconductivity and various other exotic quantum phases that are not yet fully understood. First, we provide a comprehensive slave-boson analysis of the model, including the discussion of incommensurate magnetic phases, collective modes, and a comparison to other theoretical methods that shows that our results can be massively improved through the newly implemented fluctuation corrections. Afterward, we focus on the underdoped regime and find an intertwining of spin and charge order signaled by divergences of the static charge susceptibility within the antiferromagnetic domain. There is experimental evidence for such inhomogeneous phases in various cuprate materials, which has recently aroused interest because such correlations are believed to impact the formation of Cooper pairs. Our analysis identifies two distinct charge-ordering vectors, one of which can be attributed to a Fermi-surface nesting effect and quantitatively fits experimental data in \(\mathrm{Nd}_{2-\mathrm{x}}\mathrm{Ce}_\mathrm{x}\mathrm{CuO}_4\) (NCCO), an electron-doped cuprate compound. The other resembles the so-called Yamada relation implying the formation of periodic, double-occupied domain walls with a crossover to phase separation for small dopings. Part III investigates Kondo systems by analyzing the periodic Anderson model and its generalizations. First, we consider Kondo metals and detect weakly magnetized ferromagnetic order in qualitative agreement with experimental observations, which hinders the formation of heavy fermions. Nevertheless, we suggest two different parameter regimes that could host a possible Kondo regime in the context of one or two conduction bands. The part is concluded with the study of topological order in Kondo insulators based on a three-dimensional model with centrosymmetric spin-orbit coupling. Thereby, we classify topologically distinct phases through appropriate \(\mathbb{Z}_2\) invariants and consider paramagnetic and antiferromagnetic mean-field ground states. Our model parameters are chosen to specifically describe samarium hexaboride (\(\mbox{SmB}_6\)), which is widely believed to be a topological Kondo insulator, and we identify topologically protected surface states in agreement with experimental evidence in that material. Moreover, our theory predicts the emergence of an antiferromagnetic topological insulator featuring one-dimensional hinge-states as the signature of higher-order topology in the strong coupling regime. While the nature of the true ground state is still under debate, corresponding long-range magnetic order has been observed in pressurized or alloyed \(\mbox{SmB}_6\), and recent experimental findings point towards non-trivial topology under these circumstances. The ability to understand and control topological systems brings forth promising applications in the context of spintronics and quantum computing.}, subject = {Elektronenkorrelation}, language = {en} } @phdthesis{Schmitt2022, author = {Schmitt, Matthias}, title = {High Energy Spin- and Momentum-Resolved Photoelectron Spectroscopy of Complex Oxides}, doi = {10.25972/OPUS-26475}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-264757}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Spin- and \(k\)-resolved hard X-ray photoelectron spectroscopy (HAXPES) is a powerful tool to probe bulk electronic properties of complex metal oxides. Due to the low efficiency of common spin detectors of about \(10^{-4}\), such experiments have been rarely performed within the hard X-ray regime since the notoriously low photoionization cross sections further lower the performance tremendously. This thesis is about a new type of spin detector, which employs an imaging spin-filter with multichannel electron recording. This increases the efficiency by a factor of \(10^4\) and makes spin- and \(k\)-resolved photoemission at high excitation energies possible. Two different technical approaches were pursued in this thesis: One using a hemispherical deflection analyzer (HDA) and a separate external spin detector chamber, the other one resorting to a momentum- or \(k\)-space microscope with time-of-flight (TOF) energy recording and an integrated spin-filter crystal. The latter exhibits significantly higher count rates and - since it was designed for this purpose from scratch - the integrated spin-filter option found out to be more viable than the subsequent upgrade of an existing setup with an HDA. This instrumental development is followed by the investigation of the complex metal oxides (CMOs) KTaO\(_3\) by angle-resolved HAXPES (HARPES) and Fe\(_3\)O\(_4\) by spin-resolved HAXPES (spin-HAXPES), respectively. KTaO\(_3\) (KTO) is a band insulator with a valence-electron configuration of Ta 5\(d^0\). By angle- and spin-integrated HAXPES it is shown that at the buried interface of LaAlO\(_3\)/KTO - by the generation of oxygen vacancies and hence effective electron doping - a conducting electron system forms in KTO. Further investigations using the momentum-resolution of the \(k\)-space TOF microscope show that these states are confined to the surface in KTO and intensity is only obtained from the center or the Gamma-point of each Brillouin zone (BZ). These BZs are furthermore square-like arranged reflecting the three-dimensional cubic crystal structure of KTO. However, from a comparison to calculations it is found that the band structure deviates from that of electron-doped bulk KTaO\(_3\) due to the confinement to the interface. There is broad consensus that Fe\(_3\)O\(_4\) is a promising material for spintronics applications due to its high degree of spin polarization at the Fermi level. However, previous attempts to measure the spin polarization by spin-resolved photoemission spectroscopy have been hampered by the use of low photon energies resulting in high surface sensitivity. The surfaces of magnetite, though, tend to reconstruct due to their polar nature, and thus their magnetic and electronic properties may strongly deviate from each other and from the bulk, dependent on their orientation and specific preparation. In this work, the intrinsic bulk spin polarization of magnetite at the Fermi level (\(E_F\)) by spin-resolved photoelectron spectroscopy, is determined by spin-HAXPES on (111)-oriented thin films, epitaxially grown on ZnO(0001) to be \(P(E_F) = -80^{+10}_{-20}\) \%.}, subject = {Elektronenkorrelation}, language = {en} }