@article{BechtSchollmayerMonakhovaetal.2021, author = {Becht, Alexander and Schollmayer, Curd and Monakhova, Yulia and Holzgrabe, Ulrike}, title = {Tracing the origin of paracetamol tablets by near-infrared, mid-infrared, and nuclear magnetic resonance spectroscopy using principal component analysis and linear discriminant analysis}, series = {Analytical and Bioanalytical Chemistry}, volume = {413}, journal = {Analytical and Bioanalytical Chemistry}, number = {11}, doi = {10.1007/s00216-021-03249-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265400}, pages = {3107-3118}, year = {2021}, abstract = {Most drugs are no longer produced in their own countries by the pharmaceutical companies, but by contract manufacturers or at manufacturing sites in countries that can produce more cheaply. This not only makes it difficult to trace them back but also leaves room for criminal organizations to fake them unnoticed. For these reasons, it is becoming increasingly difficult to determine the exact origin of drugs. The goal of this work was to investigate how exactly this is possible by using different spectroscopic methods like nuclear magnetic resonance and near- and mid-infrared spectroscopy in combination with multivariate data analysis. As an example, 56 out of 64 different paracetamol preparations, collected from 19 countries around the world, were chosen to investigate whether it is possible to determine the pharmaceutical company, manufacturing site, or country of origin. By means of suitable pre-processing of the spectra and the different information contained in each method, principal component analysis was able to evaluate manufacturing relationships between individual companies and to differentiate between production sites or formulations. Linear discriminant analysis showed different results depending on the spectral method and purpose. For all spectroscopic methods, it was found that the classification of the preparations to their manufacturer achieves better results than the classification to their pharmaceutical company. The best results were obtained with nuclear magnetic resonance and near-infrared data, with 94.6\%/99.6\% and 98.7/100\% of the spectra of the preparations correctly assigned to their pharmaceutical company or manufacturer.}, language = {en} } @article{BulittaJiaoLandersdorferetal.2019, author = {Bulitta, J{\"u}rgen B. and Jiao, Yuanyuan and Landersdorfer, Cornelia B. and Sutaria, Dhruvitkumar S. and Tao, Xun and Shin, Eunjeong and H{\"o}hl, Rainer and Holzgrabe, Ulrike and Stephan, Ulrich and S{\"o}rgel, Fritz}, title = {Comparable Bioavailability and Disposition of Pefloxacin in Patients with Cystic Fibrosis and Healthy Volunteers Assessed via Population Pharmacokinetics}, series = {Pharmaceutics}, volume = {11}, journal = {Pharmaceutics}, number = {7}, issn = {1999-4923}, doi = {10.3390/pharmaceutics11070323}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197221}, pages = {323}, year = {2019}, abstract = {Quinolone antibiotics present an attractive oral treatment option in patients with cystic fibrosis (CF). Prior studies have reported comparable clearances and volumes of distribution in patients with CF and healthy volunteers for primarily renally cleared quinolones. We aimed to provide the first pharmacokinetic comparison for pefloxacin as a predominantly nonrenally cleared quinolone and its two metabolites between both subject groups. Eight patients with CF (fat-free mass [FFM]: 36.3 ± 6.9 kg, average ± SD) and ten healthy volunteers (FFM: 51.7 ± 9.9 kg) received 400 mg pefloxacin as a 30 min intravenous infusion and orally in a randomized, two-way crossover study. All plasma and urine data were simultaneously modelled. Bioavailability was complete in both subject groups. Pefloxacin excretion into urine was approximately 74\% higher in patients with CF compared to that in healthy volunteers, whereas the urinary excretion of metabolites was only slightly higher in patients with CF. After accounting for body size and composition via allometric scaling by FFM, pharmacokinetic parameter estimates in patients with CF divided by those in healthy volunteers were 0.912 for total clearance, 0.861 for nonrenal clearance, 1.53 for renal clearance, and 0.916 for volume of distribution. Nonrenal clearance accounted for approximately 90\% of total pefloxacin clearance. Overall, bioavailability and disposition were comparable between both subject groups.}, language = {en} } @article{CecilRikanovicOhlsenetal.2011, author = {Cecil, Alexander and Rikanovic, Carina and Ohlsen, Knut and Liang, Chunguang and Bernhardt, Jorg and Oelschlaeger, Tobias A. and Gulder, Tanja and Bringmann, Gerd and Holzgrabe, Ulrike and Unger, Matthias and Dandekar, Thomas}, title = {Modeling antibiotic and cytotoxic effects of the dimeric isoquinoline IQ-143 on metabolism and its regulation in Staphylococcus aureus, Staphylococcus epidermidis and human cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68802}, year = {2011}, abstract = {Background: Xenobiotics represent an environmental stress and as such are a source for antibiotics, including the isoquinoline (IQ) compound IQ-143. Here, we demonstrate the utility of complementary analysis of both host and pathogen datasets in assessing bacterial adaptation to IQ-143, a synthetic analog of the novel type N,C-coupled naphthyl-isoquinoline alkaloid ancisheynine. Results: Metabolite measurements, gene expression data and functional assays were combined with metabolic modeling to assess the effects of IQ-143 on Staphylococcus aureus, Staphylococcus epidermidis and human cell lines, as a potential paradigm for novel antibiotics. Genome annotation and PCR validation identified novel enzymes in the primary metabolism of staphylococci. Gene expression response analysis and metabolic modeling demonstrated the adaptation of enzymes to IQ-143, including those not affected by significant gene expression changes. At lower concentrations, IQ-143 was bacteriostatic, and at higher concentrations bactericidal, while the analysis suggested that the mode of action was a direct interference in nucleotide and energy metabolism. Experiments in human cell lines supported the conclusions from pathway modeling and found that IQ-143 had low cytotoxicity. Conclusions: The data suggest that IQ-143 is a promising lead compound for antibiotic therapy against staphylococci. The combination of gene expression and metabolite analyses with in silico modeling of metabolite pathways allowed us to study metabolic adaptations in detail and can be used for the evaluation of metabolic effects of other xenobiotics.}, subject = {Staphylococcus aureus}, language = {en} } @article{ElHossaryAbdelHalimIbrahimetal.2020, author = {El-Hossary, Ebaa M. and Abdel-Halim, Mohammad and Ibrahim, Eslam S. and Pimentel-Elardo, Sheila Marie and Nodwell, Justin R. and Handoussa, Heba and Abdelwahab, Miada F. and Holzgrabe, Ulrike and Abdelmohsen, Usama Ramadan}, title = {Natural Products Repertoire of the Red Sea}, series = {Marine Drugs}, volume = {18}, journal = {Marine Drugs}, number = {9}, issn = {1660-3397}, doi = {10.3390/md18090457}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213110}, year = {2020}, abstract = {Marine natural products have achieved great success as an important source of new lead compounds for drug discovery. The Red Sea provides enormous diversity on the biological scale in all domains of life including micro- and macro-organisms. In this review, which covers the literature to the end of 2019, we summarize the diversity of bioactive secondary metabolites derived from Red Sea micro- and macro-organisms, and discuss their biological potential whenever applicable. Moreover, the diversity of the Red Sea organisms is highlighted as well as their genomic potential. This review is a comprehensive study that compares the natural products recovered from the Red Sea in terms of ecological role and pharmacological activities.}, language = {en} } @article{GlaserSchultheisHazraetal.2014, author = {Glaser, Jan and Schultheis, Martina and Hazra, Sudipta and Hazra, Banazri and Moll, Heidrun and Schurigt, Uta and Holzgrabe, Ulrike}, title = {Antileishmanial Lead Structures from Nature: Analysis of Structure-Activity Relationships of a Compound Library Derived from Caffeic Acid Bornyl Ester}, doi = {10.3390/molecules19021394}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112835}, year = {2014}, abstract = {Bioassay-guided fractionation of a chloroform extract of Valeriana wallichii (V. wallichii) rhizomes lead to the isolation and identification of caffeic acid bornyl ester (1) as the active component against Leishmania major (L. major) promastigotes (IC50 = 48.8 µM). To investigate the structure-activity relationship (SAR), a library of compounds based on 1 was synthesized and tested in vitro against L. major and L. donovani promastigotes, and L. major amastigotes. Cytotoxicity was determined using a murine J774.1 cell line and bone marrow derived macrophages (BMDM). Some compounds showed antileishmanial activity in the concentration range of pentamidine and miltefosine which are the standard drugs in use. In the L. major amastigote assay compounds 15, 19 and 20 showed good activity with relatively low cytotoxicity against BMDM, resulting in acceptable selectivity indices. Molecules with adjacent phenolic hydroxyl groups exhibited elevated cytotoxicity against murine cell lines J774.1 and BMDM. The Michael system seems not to be essential for antileishmanial activity. Based on the results compound 27 can be regarded as new lead structure for further structure optimization}, language = {en} } @article{GlaserSchultheisMolletal.2015, author = {Glaser, Jan and Schultheis, Martina and Moll, Heidrun and Hazra, Banasri and Holzgrabe, Ulrike}, title = {Antileishmanial and Cytotoxic Compounds from Valeriana wallichii and Identification of a Novel Nepetolactone Derivative}, series = {Molecules}, volume = {20}, journal = {Molecules}, number = {4}, doi = {10.3390/molecules20045740}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125320}, pages = {5740-5753}, year = {2015}, abstract = {The chloroform extract of Valeriana wallichii (V. wallichii) rhizomes was investigated to elucidate the structures responsible for reported antileishmanial activity. Besides bornyl caffeate (1, already been reported by us previously), bioassay-guided fractionation resulted in two additional cinnamic acid derivatives 2-3 with moderate leishmanicidal activity. The structure of a novel nepetolactone derivative 4 having a cinnamic acid moiety was elucidated by means of spectral analysis. To the best of our knowledge villoside aglycone (5) was isolated from this plant for the first time. The bioassay-guided fractionation yielded two new (compounds 6-7) and two known valtrates (compounds 8-9) with leishmanicidal potential against Leishmania major (L. major) promastigotes. In addition, β-bisabolol (10), α-kessyl alcohol (11), valeranone (12), bornyl isovalerate (13) and linarin-2-O-methylbutyrate (14) were identified. This is the first report on the isolation of 4'-demethylpodophyllotoxin (15), podophyllotoxin (16) and pinoresinol (17) in V. wallichii. In total thirteen known and four new compounds were identified from the extract and their cytotoxic and antileishmanial properties were evaluated.}, language = {en} } @article{GlaserSchurigtSuzukietal.2015, author = {Glaser, Jan and Schurigt, Uta and Suzuki, Brian M. and Caffrey, Connor R. and Holzgrabe, Ulrike}, title = {Anti-Schistosomal Activity of Cinnamic Acid Esters: Eugenyl}, series = {Molecules}, volume = {20}, journal = {Molecules}, doi = {10.3390/molecules200610873}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125712}, pages = {10873-10883}, year = {2015}, abstract = {Bornyl caffeate (1) was previously isolated by us from Valeriana (V.) wallichii rhizomes and identified as an anti-leishmanial substance. Here, we screened a small compound library of synthesized derivatives 1-30 for activity against schistosomula of Schistosoma (S.) mansoni. Compound 1 did not show any anti-schistosomal activity. However, strong phenotypic changes, including the formation of vacuoles, degeneration and death were observed after in vitro treatment with compounds 23 (thymyl cinnamate) and 27 (eugenyl cinnamate). Electron microscopy analysis of the induced vacuoles in the dying parasites suggests that 23 and 27 interfere with autophagy.}, language = {en} } @article{GutierrezGiraldoDavilaCombarizaetal.2020, author = {Guti{\´e}rrez, Gustavo and Giraldo-D{\´a}vila, Deisy and Combariza, Marianny Y. and Holzgrabe, Ulrike and Tabares-Guevara, Jorge Humberto and Ram{\´i}rez-Pineda, Jos{\´e} Robinson and Ac{\´i}n, Sergio and Mu{\~n}oz, Diana Lorena and Montoya, Guillermo and Balcazar, Norman}, title = {Serjanic acid improves immunometabolic markers in a diet-induced obesity mouse model}, series = {Molecules}, volume = {25}, journal = {Molecules}, number = {7}, issn = {1420-3049}, doi = {10.3390/molecules25071486}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203253}, year = {2020}, abstract = {Plant extracts from Cecropia genus have been used by Latin-American traditional medicine to treat metabolic disorders and diabetes. Previous reports have shown that roots of Cecropia telenitida that contains serjanic acid as one of the most prominent and representative pentacyclic triterpenes. The study aimed to isolate serjanic acid and evaluate its effect in a prediabetic murine model by oral administration. A semi-pilot scale extraction was established and serjanic acid purification was followed using direct MALDI-TOF analysis. A diet induced obesity mouse model was used to determine the impact of serjanic acid over selected immunometabolic markers. Mice treated with serjanic acid showed decreased levels of cholesterol and triacylglycerols, increased blood insulin levels, decreased fasting blood glucose and improved glucose tolerance, and insulin sensitivity. At transcriptional level, the reduction of inflammation markers related to adipocyte differentiation is reported.}, language = {en} } @article{GuentzelSchillingHanioetal.2020, author = {G{\"u}ntzel, Paul and Schilling, Klaus and Hanio, Simon and Schlauersbach, Jonas and Schollmayer, Curd and Meinel, Lorenz and Holzgrabe, Ulrike}, title = {Bioinspired Ion Pairs Transforming Papaverine into a Protic Ionic Liquid and Salts}, series = {ACS Omega}, volume = {5}, journal = {ACS Omega}, number = {30}, doi = {10.1021/acsomega.0c02630}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230265}, pages = {19202-19209}, year = {2020}, abstract = {Microbial, mammalian, and plant cells produce and contain secondary metabolites, which typically are soluble in water to prevent cell damage by crystallization. The formation of ion pairs, for example, with carboxylic acids or mineral acids, is a natural blueprint to maintain basic metabolites in solution. Here, we aim at showing whether the mostly large carboxylates form soluble protic ionic liquids (PILs) with the basic natural product papaverine resulting in enhanced aqueous solubility. The obtained PILs were characterized by H-1-N-15 HMBC nuclear magnetic resonance (NMR) and in the solid state using X-ray powder diffraction, differential scanning calorimetry, and dissolution measurements. Furthermore, their supramolecular pattern in aqueous solution was studied by means of potentiometric and photometrical solubility, NMR aggregation assay, dynamic light scattering, zeta potential, and viscosity measurements. Thereby, we identified the naturally occurring carboxylic acids, citric acid, malic acid, and tartaric acid, as being appropriate counterions for papaverine and which will facilitate the formation of PILs with their beneficial characteristics, like the improved dissolution rate and enhanced apparent solubility.}, language = {en} } @article{HartungSeufertBergesetal.2012, author = {Hartung, Andreas and Seufert, Florian and Berges, Carsten and Gessner, Viktoria H. and Holzgrabe, Ulrike}, title = {One-Pot Ugi/Aza-Michael Synthesis of Highly Substituted 2,5-Diketopiperazines with Anti-Proliferative Properties}, series = {Molecules}, volume = {17}, journal = {Molecules}, number = {12}, doi = {10.3390/molecules171214685}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130423}, pages = {14685-14699}, year = {2012}, abstract = {The well-known Ugi reaction of aldehydes with amines, carboxylic acids and isocyanides leads to the formation of acyclic alpha-acylaminocarboxamides. Replacement of the carboxylic acid derivatives with beta-acyl substituted acrylic acids gives access to highly substituted 2,5-diketopiperazines in one single reaction-step without additives or complex reaction procedures. The obtained diketopiperazines show anti-proliferative effects on activated T cells and represent therefore potential candidates for targeting unwanted T cell-mediated immune responses.}, language = {en} }