@article{LundtKlembtCherotchenkoetal.2016, author = {Lundt, Nils and Klembt, Sebastian and Cherotchenko, Evgeniia and Betzold, Simon and Iff, Oliver and Nalitov, Anton V. and Klaas, Martin and Dietrich, Christof P. and Kavokin, Alexey V. and H{\"o}fling, Sven and Schneider, Christian}, title = {Room-temperature Tamm-plasmon exciton-polaritons with a WSe\(_{2}\) monolayer}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms13328}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169470}, year = {2016}, abstract = {Solid-state cavity quantum electrodynamics is a rapidly advancing field, which explores the frontiers of light-matter coupling. Metal-based approaches are of particular interest in this field, as they carry the potential to squeeze optical modes to spaces significantly below the diffraction limit. Transition metal dichalcogenides are ideally suited as the active material in cavity quantum electrodynamics, as they interact strongly with light at the ultimate monolayer limit. Here, we implement a Tamm-plasmon-polariton structure and study the coupling to a monolayer of WSe\(_{2}\), hosting highly stable excitons. Exciton-polariton formation at room temperature is manifested in the characteristic energy-momentum dispersion relation studied in photoluminescence, featuring an anti-crossing between the exciton and photon modes with a Rabi-splitting of 23.5 meV. Creating polaritonic quasiparticles in monolithic, compact architectures with atomic monolayers under ambient conditions is a crucial step towards the exploration of nonlinearities, macroscopic coherence and advanced spinor physics with novel, low-mass bosons.}, language = {en} } @phdthesis{Betzold2022, author = {Betzold, Simon}, title = {Starke Licht-Materie-Wechselwirkung und Polaritonkondensation in hemisph{\"a}rischen Mikrokavit{\"a}ten mit eingebetteten organischen Halbleitern}, doi = {10.25972/OPUS-26665}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266654}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Kavit{\"a}ts-Exziton-Polaritonen (Polaritonen) sind hybride Quasiteilchen, die sich aufgrund starker Kopplung von Halbleiter-Exzitonen mit Kavit{\"a}tsphotonen ausbilden. Diese Quasiteilchen weisen eine Reihe interessanter Eigenschaften auf, was sie einerseits f{\"u}r die Grundlagenforschung, andererseits auch f{\"u}r die Entwicklung neuartiger Bauteile sehr vielversprechend macht. Bei Erreichen einer ausreichend großen Teilchendichte geht das System in den Exziton-Polariton-Kondensationszustand {\"u}ber, was zur Emission von laserartigem Licht f{\"u}hrt. Organische Halbleiter als aktives Emittermaterial zeigen in diesem Kontext großes Potential, da deren Exzitonen neben großen Oszillatorst{\"a}rken auch hohe Bindungsenergien aufweisen. Deshalb ist es m{\"o}glich, unter Verwendung organischer Halbleiter selbst bei Umgebungsbedingungen {\"a}ußerst stabile Polaritonen zu erzeugen. Eine wichtige Voraussetzung zur Umsetzung von integrierten opto-elektronischen Bauteilen basierend auf Polaritonen ist der kontrollierte r{\"a}umliche Einschluss sowie die Realisierung von frei konfigurierbaren Potentiallandschaften. Diese Arbeit besch{\"a}ftigt sich mit der Entwicklung und der Untersuchung geeigneter Plattformen zur Erzeugung von Exziton-Polaritonen und Polaritonkondensaten in hemisph{\"a}rischen Mikrokavit{\"a}ten, in die organische Halbleiter eingebettet sind.}, subject = {Exziton-Polariton}, language = {de} }