@article{WilhelmsBroscheitShityakov2023, author = {Wilhelms, Benedikt and Broscheit, Jens and Shityakov, Sergey}, title = {Chemical analysis and molecular modelling of cyclodextrin-formulated propofol and its sodium salt to improve drug solubility, stability and pharmacokinetics (cytogenotoxicity)}, series = {Pharmaceuticals}, volume = {16}, journal = {Pharmaceuticals}, number = {5}, issn = {1424-8247}, doi = {10.3390/ph16050667}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313705}, year = {2023}, abstract = {Propofol is a widely used general anesthetic in clinical practice, but its use is limited by its water-insoluble nature and associated pharmacokinetic and pharmacodynamic limitations. Therefore, researchers have been searching for alternative formulations to lipid emulsion to address the remaining side effects. In this study, novel formulations for propofol and its sodium salt Na-propofolat were designed and tested using the amphiphilic cyclodextrin (CD) derivative hydroxypropyl-β-cyclodextrin (HPβCD). The study found that spectroscopic and calorimetric measurements suggested complex formation between propofol/Na-propofolate and HPβCD, which was confirmed by the absence of an evaporation peak and different glass transition temperatures. Moreover, the formulated compounds showed no cytotoxicity and genotoxicity compared to the reference. The molecular modeling simulations based on molecular docking predicted a higher affinity for propofol/HPβCD than for Na-propofolate/HPβCD, as the former complex was more stable. This finding was further confirmed by high-performance liquid chromatography. In conclusion, the CD-based formulations of propofol and its sodium salt may be a promising option and a plausible alternative to conventional lipid emulsions.}, language = {en} } @article{ShityakovSohajdaPuskasetal.2014, author = {Shityakov, Sergey and Sohajda, Tam{\´a}s and Puskas, Istav{\´a}n and Roewer, Norbert and F{\"o}rster, Carola and Broscheit, Jens-Albert}, title = {Ionization States, Cellular Toxicity and Molecular Modeling Studies of Midazolam Complexed with Trimethyl-β-Cyclodextrin}, series = {Molecules}, volume = {19}, journal = {Molecules}, number = {10}, doi = {10.3390/molecules191016861}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119186}, pages = {16861-76}, year = {2014}, abstract = {We investigated the ionization profiles for open-ring (OR) and closed-ring (CR) forms of midazolam and drug-binding modes with heptakis-(2,3,6-tri-O-methyl)-β-cyclodextrin (trimethyl-β-cyclodextrin; TRIMEB) using molecular modeling techniques and quantum mechanics methods. The results indicated that the total net charges for different molecular forms of midazolam tend to be cationic for OR and neutral for CR at physiological pH levels. The thermodynamic calculations demonstrated that CR is less water-soluble than OR, mainly due to the maximal solvation energy (ΔG(CR)(solv = -9.98 kcal·mol ⁻¹), which has a minimal ΔG(OR)(solv) of -67.01 kcal·mol⁻¹. A cell viability assay did not detect any signs of TRIMEB and OR/CR-TRIMEB complex toxicity on the cEND cells after 24 h of incubation in either Dulbecco's Modified Eagles Medium or in heat-inactivated human serum. The molecular docking studies identified the more flexible OR form of midazolam as being a better binder to TRIMEB with the fluorophenyl ring introduced inside the amphiphilic cavity of the host molecule. The OR binding affinity was confirmed by a minimal Gibbs free energy of binding (ΔG(bind)) value of -5.57 ± 0.02 kcal·mol⁻¹, an equilibrium binding constant (K(b)) of 79.89 ± 2.706 μM, and a ligand efficiency index (LE(lig)) of -0.21 ± 0.001. Our current data suggest that in order to improve the clinical applications of midazolam via its complexation with trimethyl-β-cyclodextrin to increase drug's overall aqueous solubility, it is important to concern the different forms and ionization states of this anesthetic. All mean values are indicated with their standard deviations.}, language = {en} } @article{ShityakovSkorbFoersteretal.2021, author = {Shityakov, Sergey and Skorb, Ekaterina V. and F{\"o}rster, Carola Y. and Dandekar, Thomas}, title = {Scaffold Searching of FDA and EMA-Approved Drugs Identifies Lead Candidates for Drug Repurposing in Alzheimer's Disease}, series = {Frontiers in Chemistry}, volume = {9}, journal = {Frontiers in Chemistry}, issn = {2296-2646}, doi = {10.3389/fchem.2021.736509}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248703}, year = {2021}, abstract = {Clinical trials of novel therapeutics for Alzheimer's Disease (AD) have consumed a significant amount of time and resources with largely negative results. Repurposing drugs already approved by the Food and Drug Administration (FDA), European Medicines Agency (EMA), or Worldwide for another indication is a more rapid and less expensive option. Therefore, we apply the scaffold searching approach based on known amyloid-beta (Aβ) inhibitor tramiprosate to screen the DrugCentral database (n = 4,642) of clinically tested drugs. As a result, menadione bisulfite and camphotamide substances with protrombogenic and neurostimulation/cardioprotection effects were identified as promising Aβ inhibitors with an improved binding affinity (ΔGbind) and blood-brain barrier permeation (logBB). Finally, the data was also confirmed by molecular dynamics simulations using implicit solvation, in particular as Molecular Mechanics Generalized Born Surface Area (MM-GBSA) model. Overall, the proposed in silico pipeline can be implemented through the early stage rational drug design to nominate some lead candidates for AD, which will be further validated in vitro and in vivo, and, finally, in a clinical trial.}, language = {en} } @article{ShityakovSalvadorPastorinetal.2015, author = {Shityakov, Sergey and Salvador, Ellaine and Pastorin, Giorgia and F{\"o}rster, Carola}, title = {Blood-brain barrier transport studies, aggregation, and molecular dynamics simulation of multiwalled carbon nanotube functionalized with fluorescein isothiocyanate}, series = {International Journal of Nanomedicine}, volume = {10}, journal = {International Journal of Nanomedicine}, doi = {10.2147/IJN.S68429}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149233}, pages = {1703-1713}, year = {2015}, abstract = {In this study, the ability of a multiwalled carbon nanotube functionalized with fluorescein isothiocyanate (MWCNT-FITC) was assessed as a prospective central nervous system-targeting drug delivery system to permeate the blood-brain barrier. The results indicated that the MWCNT-FITC conjugate is able to penetrate microvascular cerebral endothelial monolayers; its concentrations in the Transwell® system were fully equilibrated after 48 hours. Cell viability test, together with phase-contrast and fluorescence microscopies, did not detect any signs of MWCNT-FITC toxicity on the cerebral endothelial cells. These microscopic techniques also revealed presumably the intracellular localization of fluorescent MWCNT-FITCs apart from their massive nonfluorescent accumulation on the cellular surface due to nanotube lipophilic properties. In addition, the 1,000 ps molecular dynamics simulation in vacuo discovered the phenomenon of carbon nanotube aggregation driven by van der Waals forces via MWCN-TFITC rapid dissociation as an intermediate phase.}, language = {en} } @article{ShityakovRoewerFoersteretal.2017, author = {Shityakov, Sergey and Roewer, Norbert and F{\"o}rster, Carola and Broscheit, Jens-Albert}, title = {In silico modeling of indigo and Tyrian purple single-electron nano-transistors using density functional theory approach}, series = {Nanoscale Research Letters}, volume = {12}, journal = {Nanoscale Research Letters}, number = {439}, doi = {10.1186/s11671-017-2193-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158332}, year = {2017}, abstract = {The purpose of this study was to develop and implement an in silico model of indigoid-based single-electron transistor (SET) nanodevices, which consist of indigoid molecules from natural dye weakly coupled to gold electrodes that function in a Coulomb blockade regime. The electronic properties of the indigoid molecules were investigated using the optimized density-functional theory (DFT) with a continuum model. Higher electron transport characteristics were determined for Tyrian purple, consistent with experimentally derived data. Overall, these results can be used to correctly predict and emphasize the electron transport functions of organic SETs, demonstrating their potential for sustainable nanoelectronics comprising the biodegradable and biocompatible materials.}, language = {en} } @article{ShityakovPuskasRoeweretal.2014, author = {Shityakov, Sergey and Pusk{\´a}s, Istv{\´a}n and Roewer, Norbert and F{\"o}rster, Carola and Broscheit, Jens}, title = {Three-dimensional quantitative structure-activity relationship and docking studies in a series of anthocyanin derivatives as cytochrome P450 3A4 inhibitors}, series = {Advances and Applications in Bioinformatics and Chemistry}, volume = {7}, journal = {Advances and Applications in Bioinformatics and Chemistry}, doi = {10.2147/AABC.S56478}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120226}, pages = {11-21}, year = {2014}, abstract = {The cytochrome P450 (CYP)3A4 enzyme affects the metabolism of most drug-like substances, and its inhibition may influence drug safety. Modulation of CYP3A4 by flavonoids, such as anthocyanins, has been shown to inhibit the mutagenic activity of mammalian cells. Considering the previous investigations addressing CYP3A4 inhibition by these substances, we studied the three-dimensional quantitative structure-activity relationship (3D-QSAR) in a series of anthocyanin derivatives as CYP3A4 inhibitors. For the training dataset (n=12), comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) yielded crossvalidated and non-crossvalidated models with a q (2) of 0.795 (0.687) and r (2) of 0.962 (0.948), respectively. The models were also validated by an external test set of four compounds with r (2) of 0.821 (CoMFA) and r (2) of 0.812 (CoMSIA). The binding affinity modes associated with experimentally derived IC50 (half maximal inhibitory concentration) values were confirmed by molecular docking into the CYP3A4 active site with r (2) of 0.66. The results obtained from this study are useful for a better understanding of the effects of anthocyanin derivatives on inhibition of carcinogen activation and cellular DNA damage.}, language = {en} } @article{ShityakovPuskasPapaietal.2015, author = {Shityakov, Sergey and Pusk{\´a}s, Istv{\´a}n and P{\´a}pai, Katalin and Salvador, Ellaine and Roewer, Norbert and F{\"o}rster, Carola and Broscheit, Jens-Albert}, title = {Sevoflurane-sulfobutylether-\(\beta\)-cyclodextrin complex: preparation, characterization, cellular toxicity, molecular modeling and blood-brain barrier transport studies}, series = {Molecules}, volume = {20}, journal = {Molecules}, doi = {10.3390/molecules200610264}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148543}, pages = {10264-10279}, year = {2015}, abstract = {The objective of the present investigation was to study the ability of sulfobutylether-\(\beta\)-cyclodextrin (SBECD) to form an inclusion complex with sevoflurane (SEV), a volatile anesthetic with poor water solubility. The inclusion complex was prepared, characterized and its cellular toxicity and blood-brain barrier (BBB) permeation potential of the formulated SEV have also been examined for the purpose of controlled drug delivery. The SEV-SBE\(\beta\)CD complex was nontoxic to the primary brain microvascular endothelial (pEND) cells at a clinically relevant concentration of sevoflurane. The inclusion complex exhibited significantly higher BBB permeation profiles as compared with the reference substance (propranolol) concerning calculated apparent permeability values (P\(_{app}\)). In addition, SEV binding affinity to SBE\(\beta\)CD was confirmed by a minimal Gibbs free energy of binding (ΔG\(_{bind}\)) value of -1.727 ± 0.042 kcal・mol\(^{-1}\) and an average binding constant (K\(_{b}\)) of 53.66 ± 9.24 mM indicating rapid drug liberation from the cyclodextrin amphiphilic cavity.}, language = {en} } @article{ShityakovNagaiErguenetal.2022, author = {Shityakov, Sergey and Nagai, Michiaki and Erg{\"u}n, S{\"u}leyman and Braunger, Barbara M. and F{\"o}rster, Carola Y.}, title = {The protective effects of neurotrophins and microRNA in diabetic retinopathy, nephropathy and heart failure via regulating endothelial function}, series = {Biomolecules}, volume = {12}, journal = {Biomolecules}, number = {8}, issn = {2218-273X}, doi = {10.3390/biom12081113}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285966}, year = {2022}, abstract = {Diabetes mellitus is a common disease affecting more than 537 million adults worldwide. The microvascular complications that occur during the course of the disease are widespread and affect a variety of organ systems in the body. Diabetic retinopathy is one of the most common long-term complications, which include, amongst others, endothelial dysfunction, and thus, alterations in the blood-retinal barrier (BRB). This particularly restrictive physiological barrier is important for maintaining the neuroretina as a privileged site in the body by controlling the inflow and outflow of fluid, nutrients, metabolic end products, ions, and proteins. In addition, people with diabetic retinopathy (DR) have been shown to be at increased risk for systemic vascular complications, including subclinical and clinical stroke, coronary heart disease, heart failure, and nephropathy. DR is, therefore, considered an independent predictor of heart failure. In the present review, the effects of diabetes on the retina, heart, and kidneys are described. In addition, a putative common microRNA signature in diabetic retinopathy, nephropathy, and heart failure is discussed, which may be used in the future as a biomarker to better monitor disease progression. Finally, the use of miRNA, targeted neurotrophin delivery, and nanoparticles as novel therapeutic strategies is highlighted.}, language = {en} } @article{ShityakovHayashiStoerketal.2021, author = {Shityakov, Sergey and Hayashi, Kentaro and St{\"o}rk, Stefan and Scheper, Verena and Lenarz, Thomas and F{\"o}rster, Carola Y.}, title = {The conspicuous link between ear, brain and heart - Could neurotrophin-treatment of age-related hearing loss help prevent Alzheimer's disease and associated amyloid cardiomyopathy?}, series = {Biomolecules}, volume = {11}, journal = {Biomolecules}, number = {6}, issn = {2218-273X}, doi = {10.3390/biom11060900}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241084}, year = {2021}, abstract = {Alzheimer's disease (AD), the most common cause of dementia in the elderly, is a neurodegenerative disorder associated with neurovascular dysfunction and cognitive decline. While the deposition of amyloid β peptide (Aβ) and the formation of neurofibrillary tangles (NFTs) are the pathological hallmarks of AD-affected brains, the majority of cases exhibits a combination of comorbidities that ultimately lead to multi-organ failure. Of particular interest, it can be demonstrated that Aβ pathology is present in the hearts of patients with AD, while the formation of NFT in the auditory system can be detected much earlier than the onset of symptoms. Progressive hearing impairment may beget social isolation and accelerate cognitive decline and increase the risk of developing dementia. The current review discusses the concept of a brain-ear-heart axis by which Aβ and NFT inhibition could be achieved through targeted supplementation of neurotrophic factors to the cochlea and the brain. Such amyloid inhibition might also indirectly affect amyloid accumulation in the heart, thus reducing the risk of developing AD-associated amyloid cardiomyopathy and cardiovascular disease.}, language = {en} } @article{ShityakovFoersterRethwilmetal.2014, author = {Shityakov, Sergey and F{\"o}rster, Carola and Rethwilm, Axel and Dandekar, Thomas}, title = {Evaluation and Prediction of the HIV-1 Central Polypurine Tract Influence on Foamy Viral Vectors to Transduce Dividing and Growth-Arrested Cells}, doi = {10.1155/2014/487969}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112763}, year = {2014}, abstract = {Retroviral vectors are potent tools for gene delivery and various biomedical applications. To accomplish a gene transfer task successfully, retroviral vectors must effectively transduce diverse cell cultures at different phases of a cell cycle. However, very promising retroviral vectors based on the foamy viral (FV) backbone lack the capacity to efficiently transduce quiescent cells. It is hypothesized that this phenomenon might be explained as the inability of foamy viruses to form a pre-integration complex (PIC) with nuclear import activity in growth-arrested cells, which is the characteristic for lentiviruses (HIV-1). In this process, the HIV-1 central polypurine tract (cPPT) serves as a primer for plus-strand synthesis to produce a "flap" element and is believed to be crucial for the subsequent double-stranded cDNA formation of all retroviral RNA genomes. In this study, the effects of the lentiviral cPPT element on the FV transduction potential in dividing and growth-arrested (G1/S phase) adenocarcinomic human alveolar basal epithelial (A549) cells are investigated by experimental and theoretical methods. The results indicated that the HIV-1 cPPT element in a foamy viral vector background will lead to a significant reduction of the FV transduction and viral titre in growth-arrested cells due to the absence of PICs with nuclear import activity.}, subject = {Evaluation}, language = {en} }