@article{VolpatoHolzgrabe2018, author = {Volpato, Daniela and Holzgrabe, Ulrike}, title = {Designing Hybrids Targeting the Cholinergic System by Modulating the Muscarinic and Nicotinic Receptors: A Concept to Treat Alzheimer's Disease}, series = {Molecules}, volume = {23}, journal = {Molecules}, number = {12}, issn = {1420-3049}, doi = {10.3390/molecules23123230}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197555}, pages = {3230}, year = {2018}, abstract = {The cholinergic hypothesis has been reported first being the cause of memory dysfunction in the Alzheimer's disease. Researchers around the globe have focused their attention on understanding the mechanisms of how this complicated system contributes to processes such as learning, memory, disorientation, linguistic problems, and behavioral issues in the indicated chronic neurodegenerative disease. The present review reports recent updates in hybrid molecule design as a strategy for selectively addressing multiple target proteins involved in Alzheimer's disease (AD) and the study of their therapeutic relevance. The rationale and the design of the bifunctional compounds will be discussed in order to understand their potential as tools to investigate the role of the cholinergic system in AD.}, language = {en} } @article{RasheedHoelleinHolzgrabe2018, author = {Rasheed, Huma and H{\"o}llein, Ludwig and Holzgrabe, Ulrike}, title = {Future information technology tools for fighting substandard and falsified medicines in low- and middle-income countries}, series = {Frontiers in Pharmacology}, volume = {9}, journal = {Frontiers in Pharmacology}, number = {995}, doi = {10.3389/fphar.2018.00995}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177068}, year = {2018}, abstract = {Substandard and falsified (SF) medicines have emerged as a global public health issue within the last two decades especially in low- and middle-income countries (LMICs). Serious consequences of this problem include a loss of trust and increased financial costs due to less disease control and more frequent complications during therapy. Of note, antimicrobial resistance is an additional long-term implication of poor-quality antimicrobials. This review covers information technology tools including medicines authentication tools (MAT) as mobile apps and messaging service, 2D barcoding approaches with drug safety alert systems, web based drug safety alerts, radiofrequency identification tags, databases to support visual inspection, digital aids to enhance the performance of quality evaluation kits, reference libraries for identification of falsified and substandard medicines, and quality evaluation kits based on machine learning for field testing. While being easy to access and simple to use, these initiatives are gaining acceptance in LMICs. Implementing 2D barcoding based on end-to-end verification and "Track and Trace" systems has emerged as a step toward global security in the supply chain. A breakthrough in web-based drug safety alert systems and data bases was the establishment of the Global Surveillance and Monitoring System by the World Health Organization in 2013. Future applications include concepts including "lab on a chip" and "paper analytical devices" and are claimed to be convenient and simple to use as well as affordable. The principles discussed herein are making profound impact in the fight against substandard and falsified medicines, offering cheap and accessible solutions.}, language = {en} } @article{BalasubramanianSkafHolzgrabeetal.2018, author = {Balasubramanian, Srikkanth and Skaf, Joseph and Holzgrabe, Ulrike and Bharti, Richa and F{\"o}rstner, Konrad U. and Ziebuhr, Wilma and Humeida, Ute H. and Abdelmohsen, Usama R. and Oelschlaeger, Tobias A.}, title = {A new bioactive compound from the marine sponge-derived Streptomyces sp. SBT348 inhibits staphylococcal growth and biofilm formation}, series = {Frontiers in Microbiology}, volume = {9}, journal = {Frontiers in Microbiology}, doi = {10.3389/fmicb.2018.01473}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221408}, year = {2018}, abstract = {Staphylococcus epidermidis, the common inhabitant of human skin and mucosal surfaces has emerged as an important pathogen in patients carrying surgical implants and medical devices. Entering the body via surgical sites and colonizing the medical devices through formation of multi-layered biofilms leads to refractory and persistent device-related infections (DRIs). Staphylococci organized in biofilms are more tolerant to antibiotics and immune responses, and thus are difficult-to-treat. The consequent morbidity and mortality, and economic losses in health care systems has strongly necessitated the need for development of new anti-bacterial and anti-biofilm-based therapeutics. In this study, we describe the biological activity of a marine sponge-derived Streptomyces sp. SBT348 extract in restraining staphylococcal growth and biofilm formation on polystyrene, glass, medically relevant titan metal, and silicone surfaces. A bioassay-guided fractionation was performed to isolate the active compound (SKC3) from the crude SBT348 extract. Our results demonstrated that SKC3 effectively inhibits the growth (MIC: 31.25 \(\mu\)g/ml) and biofilm formation (sub-MIC range: 1.95-<31.25 \(\mu\)g/ml) of S. epidermidis RP62A in vitro. Chemical characterization of SKC3 by heat and enzyme treatments, and mass spectrometry (HRMS) revealed its heat-stable and non-proteinaceous nature, and high molecular weight (1258.3 Da). Cytotoxicity profiling of SKC3 in vitro on mouse fibroblast (NIH/3T3) and macrophage (J774.1) cell lines, and in vivo on the greater wax moth larvae Galleria mellonella revealed its non-toxic nature at the effective dose. Transcriptome analysis of SKC3 treated S. epidermidis RP62A has further unmasked its negative effect on central metabolism such as carbon flux as well as, amino acid, lipid, and energy metabolism. Taken together, these findings suggest a potential of SKC3 as a putative drug to prevent staphylococcal DRIs.}, language = {en} }