@article{SommerAmrBavendieketal.2022, author = {Sommer, Kim K. and Amr, Ali and Bavendiek, Udo and Beierle, Felix and Brunecker, Peter and Dathe, Henning and Eils, J{\"u}rgen and Ertl, Maximilian and Fette, Georg and Gietzelt, Matthias and Heidecker, Bettina and Hellenkamp, Kristian and Heuschmann, Peter and Hoos, Jennifer D. E. and Keszty{\"u}s, Tibor and Kerwagen, Fabian and Kindermann, Aljoscha and Krefting, Dagmar and Landmesser, Ulf and Marschollek, Michael and Meder, Benjamin and Merzweiler, Angela and Prasser, Fabian and Pryss, R{\"u}diger and Richter, Jendrik and Schneider, Philipp and St{\"o}rk, Stefan and Dieterich, Christoph}, title = {Structured, harmonized, and interoperable integration of clinical routine data to compute heart failure risk scores}, series = {Life}, volume = {12}, journal = {Life}, number = {5}, issn = {2075-1729}, doi = {10.3390/life12050749}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-275239}, year = {2022}, abstract = {Risk prediction in patients with heart failure (HF) is essential to improve the tailoring of preventive, diagnostic, and therapeutic strategies for the individual patient, and effectively use health care resources. Risk scores derived from controlled clinical studies can be used to calculate the risk of mortality and HF hospitalizations. However, these scores are poorly implemented into routine care, predominantly because their calculation requires considerable efforts in practice and necessary data often are not available in an interoperable format. In this work, we demonstrate the feasibility of a multi-site solution to derive and calculate two exemplary HF scores from clinical routine data (MAGGIC score with six continuous and eight categorical variables; Barcelona Bio-HF score with five continuous and six categorical variables). Within HiGHmed, a German Medical Informatics Initiative consortium, we implemented an interoperable solution, collecting a harmonized HF-phenotypic core data set (CDS) within the openEHR framework. Our approach minimizes the need for manual data entry by automatically retrieving data from primary systems. We show, across five participating medical centers, that the implemented structures to execute dedicated data queries, followed by harmonized data processing and score calculation, work well in practice. In summary, we demonstrated the feasibility of clinical routine data usage across multiple partner sites to compute HF risk scores. This solution can be extended to a large spectrum of applications in clinical care.}, language = {en} } @article{SedaghatHamedaniRebsKayvanpouretal.2022, author = {Sedaghat-Hamedani, Farbod and Rebs, Sabine and Kayvanpour, Elham and Zhu, Chenchen and Amr, Ali and M{\"u}ller, Marion and Haas, Jan and Wu, Jingyan and Steinmetz, Lars M. and Ehlermann, Philipp and Streckfuss-B{\"o}meke, Katrin and Frey, Norbert and Meder, Benjamin}, title = {Genotype complements the phenotype: identification of the pathogenicity of an LMNA splice variant by nanopore long-read sequencing in a large DCM family}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {20}, issn = {1422-0067}, doi = {10.3390/ijms232012230}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290415}, year = {2022}, abstract = {Dilated cardiomyopathy (DCM) is a common cause of heart failure (HF) and is of familial origin in 20-40\% of cases. Genetic testing by next-generation sequencing (NGS) has yielded a definite diagnosis in many cases; however, some remain elusive. In this study, we used a combination of NGS, human-induced pluripotent-stem-cell-derived cardiomyocytes (iPSC-CMs) and nanopore long-read sequencing to identify the causal variant in a multi-generational pedigree of DCM. A four-generation family with familial DCM was investigated. Next-generation sequencing (NGS) was performed on 22 family members. Skin biopsies from two affected family members were used to generate iPSCs, which were then differentiated into iPSC-CMs. Short-read RNA sequencing was used for the evaluation of the target gene expression, and long-read RNA nanopore sequencing was used to evaluate the relevance of the splice variants. The pedigree suggested a highly penetrant, autosomal dominant mode of inheritance. The phenotype of the family was suggestive of laminopathy, but previous genetic testing using both Sanger and panel sequencing only yielded conflicting evidence for LMNA p.R644C (rs142000963), which was not fully segregated. By re-sequencing four additional affected family members, further non-coding LMNA variants could be detected: rs149339264, rs199686967, rs201379016, and rs794728589. To explore the roles of these variants, iPSC-CMs were generated. RNA sequencing showed the LMNA expression levels to be significantly lower in the iPSC-CMs of the LMNA variant carriers. We demonstrated a dysregulated sarcomeric structure and altered calcium homeostasis in the iPSC-CMs of the LMNA variant carriers. Using targeted nanopore long-read sequencing, we revealed the biological significance of the variant c.356+1G>A, which generates a novel 5′ splice site in exon 1 of the cardiac isomer of LMNA, causing a nonsense mRNA product with almost complete RNA decay and haploinsufficiency. Using novel molecular analysis and nanopore technology, we demonstrated the pathogenesis of the rs794728589 (c.356+1G>A) splice variant in LMNA. This study highlights the importance of precise diagnostics in the clinical management and workup of cardiomyopathies.}, language = {en} } @article{KellerLeidingerVogeletal.2014, author = {Keller, Andreas and Leidinger, Petra and Vogel, Britta and Backes, Christina and ElSharawy, Abdou and Galata, Valentina and Mueller, Sabine C. and Marquart, Sabine and Schrauder, Michael G. and Strick, Reiner and Bauer, Andrea and Wischhusen, J{\"o}rg and Beier, Markus and Kohlhaas, Jochen and Katus, Hugo A. and Hoheisel, J{\"o}rg and Franke, Andre and Meder, Benjamin and Meese, Eckart}, title = {miRNAs can be generally associated with human pathologies as exemplified for miR-144*}, series = {BMC MEDICINE}, volume = {12}, journal = {BMC MEDICINE}, issn = {1741-7015}, doi = {10.1186/s12916-014-0224-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-114349}, pages = {224}, year = {2014}, abstract = {Background: miRNA profiles are promising biomarker candidates for a manifold of human pathologies, opening new avenues for diagnosis and prognosis. Beyond studies that describe miRNAs frequently as markers for specific traits, we asked whether a general pattern for miRNAs across many diseases exists. Methods: We evaluated genome-wide circulating profiles of 1,049 patients suffering from 19 different cancer and non-cancer diseases as well as unaffected controls. The results were validated on 319 individuals using qRT-PCR. Results: We discovered 34 miRNAs with strong disease association. Among those, we found substantially decreased levels of hsa-miR-144* and hsa-miR-20b with AUC of 0.751 ( 95\% CI: 0.703-0.799), respectively. We also discovered a set of miRNAs, including hsa-miR-155*, as rather stable markers, offering reasonable control miRNAs for future studies. The strong downregulation of hsa-miR-144* and the less variable pattern of hsa-miR-155* has been validated in a cohort of 319 samples in three different centers. Here, breast cancer as an additional disease phenotype not included in the screening phase has been included as the 20th trait. Conclusions: Our study on 1,368 patients including 1,049 genome-wide miRNA profiles and 319 qRT-PCR validations further underscores the high potential of specific blood-borne miRNA patterns as molecular biomarkers. Importantly, we highlight 34 miRNAs that are generally dysregulated in human pathologies. Although these markers are not specific to certain diseases they may add to the diagnosis in combination with other markers, building a specific signature. Besides these dysregulated miRNAs, we propose a set of constant miRNAs that may be used as control markers.}, language = {en} } @article{KayvanpourWisdomLackneretal.2022, author = {Kayvanpour, Elham and Wisdom, Michael and Lackner, Maximilian K. and Sedaghat-Hamedani, Farbod and Boeckel, Jes-Niels and M{\"u}ller, Marion and Eghbalian, Rose and Dudek, Jan and Doroudgar, Shirin and Maack, Christoph and Frey, Norbert and Meder, Benjamin}, title = {VARS2 depletion leads to activation of the integrated stress response and disruptions in mitochondrial fatty acid oxidation}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {13}, issn = {1422-0067}, doi = {10.3390/ijms23137327}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284590}, year = {2022}, abstract = {Mutations in mitochondrial aminoacyl-tRNA synthetases (mtARSs) have been reported in patients with mitochondriopathies: most commonly encephalopathy, but also cardiomyopathy. Through a GWAS, we showed possible associations between mitochondrial valyl-tRNA synthetase (VARS2) dysregulations and non-ischemic cardiomyopathy. We aimed to investigate the possible consequences of VARS2 depletion in zebrafish and cultured HEK293A cells. Transient VARS2 loss-of-function was induced in zebrafish embryos using Morpholinos. The enzymatic activity of VARS2 was measured in VARS2-depleted cells via northern blot. Heterozygous VARS2 knockout was established in HEK293A cells using CRISPR/Cas9 technology. BN-PAGE and SDS-PAGE were used to investigate electron transport chain (ETC) complexes, and the oxygen consumption rate and extracellular acidification rate were measured using a Seahorse XFe96 Analyzer. The activation of the integrated stress response (ISR) and possible disruptions in mitochondrial fatty acid oxidation (FAO) were explored using RT-qPCR and western blot. Zebrafish embryos with transient VARS2 loss-of-function showed features of heart failure as well as indications of CNS and skeletal muscle involvements. The enzymatic activity of VARS2 was significantly reduced in VARS2-depleted cells. Heterozygous VARS2-knockout cells showed a rearrangement of ETC complexes in favor of complexes III\(_2\), III\(_2\) + IV, and supercomplexes without significant respiratory chain deficiencies. These cells also showed the enhanced activation of the ISR, as indicated by increased eIF-2α phosphorylation and a significant increase in the transcript levels of ATF4, ATF5, and DDIT3 (CHOP), as well as disruptions in FAO. The activation of the ISR and disruptions in mitochondrial FAO may underlie the adaptive changes in VARS2-depleted cells.}, language = {en} } @article{EberlRebsHoppeetal.2024, author = {Eberl, Hanna and Rebs, Sabine and Hoppe, Stefanie and Sedaghat-Hamedani, Farbod and Kayvanpour, Elham and Meder, Benjamin and Streckfuss-B{\"o}meke, Katrin}, title = {Generation of an RBM20-mutation-associated left-ventricular non-compaction cardiomyopathy iPSC line (UMGi255-A) into a DCM genetic background to investigate monogenetic cardiomyopathies}, series = {Stem Cell Research}, volume = {74}, journal = {Stem Cell Research}, issn = {1873-5061}, doi = {10.1016/j.scr.2023.103290}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350565}, year = {2024}, abstract = {RBM20 mutations account for 3 \% of genetic cardiomypathies and manifest with high penetrance and arrhythmogenic effects. Numerous mutations in the conserved RS domain have been described as causing dilated cardiomyopathy (DCM), whereas a particular mutation (p.R634L) drives development of a different cardiac phenotype: left-ventricular non-compaction cardiomyopathy. We generated a mutation-induced pluripotent stem cell (iPSC) line in which the RBM20-LVNC mutation p.R634L was introduced into a DCM patient line with rescued RBM20-p.R634W mutation. These DCM-634L-iPSC can be differentiated into functional cardiomyocytes to test whether this RBM20 mutation induces development of the LVNC phenotype within the genetic context of a DCM patient.}, language = {en} }