@phdthesis{Ramachandran2015, author = {Ramachandran, Sarada Devi}, title = {Development Of Three-Dimensional Liver Models For Drug Development And Therapeutical Applications}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-113155}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Primary human liver cells such as hepatocytes when isolated and cultured in 2D monolayers, de-differentiate and lose their phenotypic characteristics. In order to maintain the typical polygonal shape of the hepatocytes and their polarization with respect to the neighbouring cells and extra cellular matrix (ECM), it is essential to culture the cells in a three-dimensional (3D) environment. There are numerous culturing techniques available to retain the 3D organization including culturing hepatocytes between two layers of collagen and/or MatrigelTM (Moghe et al. 1997) or in 3D scaffolds (Burkard et al. 2012). In this thesis, three different 3D hepatic models were investigated. 1. To reflect the in vivo situation, the hepatocytes were cultured in 3D synthetic scaffolds called Mimetix®. These were generated using an electrospinning technique using biodegradable polymers. The scaffolds were modified to increase the pore size to achieve an optimal cell function and penetration into the scaffolds, which is needed for good cell-cell contact and to retain long-term phenotypic functions. Different fibre diameters, and scaffold thicknesses were analyzed using upcyte® hepatocytes. The performance of upcyte® hepatocytes in 3D scaffolds was determined by measuring metabolic functions such as cytochrome P450 3A4 (CYP3A4) and MTS metabolism. 2. Apart from maintaining the hepatocytes in 3D orientation, co-culturing the hepatocytes with other non-parenchymal cell types, such as liver sinusoidal endothelial cells (LSECs) and mesenchymal stem cells (MSCs), better reflects the complexity of the liver. Three different upcyte® cell types namely, hepatocytes, LSECs and MSCs, were used to generated 3D liver organoids. The liver organoids were generated and cultured in static and dynamic conditions. Dynamic conditions using Quasi-vivo® chambers were used to reflect the in vivo blood flow. After culturing the cells for 10 days, the structural orientation of cells within the organoids was analyzed. Functional integrity was investigated by measuring CYP3A4 activities. The organoids were further characterized using in situ hybridization for the expression of functional genes, albumin and enzymes regulating glutamine and glucose levels. 3. An ex vivo bioreactor employing a decellularized organic scaffold called a "Biological Vascularized Scaffold" (BioVaSc) was established. Jejunum of the small intestine from pigs was chemically decellularized by retaining the vascular system. The vascular tree of the BioVaSc was repopulated with upcyte® microvascular endothelial cells (mvECs). The lumen of the BioVaSc was then used to culture the liver organoids generated using upcyte® hepatocytes, LSECs and MSCs. The structural organisation of the cells within the organoids was visualized using cell-specific immunohistochemical stainings. The performance of liver organoids in the BioVaSc was determined according to metabolic functions (CYP3A4 activities). This thesis also addresses how in vitro models can be optimized and then applied to drug development and therapy. A comprehensive evaluation was conducted to investigate the application of second-generation upcyte® hepatocytes from 4 donors for inhibition and induction assays, using a selection of reference inhibitors and inducers, under optimized culture conditions. CYP1A2, CYP2B6, CYP2C9 and CYP3A4 were reproducibly inhibited in a concentration-dependent manner and the calculated IC50 values for each compound correctly classified them as potent inhibitors. Upcyte® hepatocytes were responsive to prototypical CYP1A2, CYP2B6, CYP2C9 and CYP3A4 inducers, confirming that they have functional AhR, CAR and PXR mediated CYP regulation. A panel of 11 inducers classified as potent, moderate or non-inducers of CYP3A4 and CYP2B6 were tested. Three different predictive models for CYP3A4 induction, namely the Relative Induction Score (RIS), AUCu/F2 and Cmax,u/Ind50 were analyzed. In addition, PXR (rifampicin) and CAR-selective (carbamazepine and phenytoin) inducers of CYP3A4 and CYP2B6 induction, respectively, were also demonstrated. Haemophilia A occurs due to lack of functional Factor VIII (FVIII) protein in the blood. Different types of cells from hepatic and extrahepatic origin produce FVIII. Supernatants harvested from primary LSECs were evaluated for the presence of secreted functional FVIII. In order to increase the FVIII production, different upcyte® endothelial cells such as blood outgrowth endothelial cells (BOECs), LSECs and mvECs were transduced with lentiviral particles carrying a FVIII transgene. Also, to reflect a more native situation, primary mvECs were selected and modified by transducing them with FVIII lentivirus and investigated as a potential method for generating this coagulation factor.}, subject = {Leberepithelzelle}, language = {en} } @phdthesis{Reuter2015, author = {Reuter, Miriam}, title = {Der Einfluss des Multityrosinkinaseinhibitors Sunitinib auf die Proliferation und Steroidbiosynthese von Nebennierenkarzinomzellen in vitro}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-129537}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Tyrosinkinaseinhibitoren nehmen in der modernen Onkologie einen wachsenden Stellenwert ein. Sunitinib wirkt als Multityrosinkinaseinhibitor einerseits antiangiogenetisch, andererseits auch direkt antiproliferativ auf Tumorzellen. Im Tierversuch sind unter Sunitinib adrenotoxische Wirkungen beschrieben. F{\"u}r das Nebennierenkarzinom, eine sehr seltene Tumorerkrankung mit schlechter Prognose, werden dringend neue Therapieoptionen ben{\"o}tigt. In dieser Arbeit wurde der Effekt von Sunitinib auf die Proliferation von Nebennierenkarzinomzellen in vitro und auf deren Steroidbiosynthese untersucht. Es konnte gezeigt werden, dass Sunitinib dosisabh{\"a}ngig auf die beiden Nebennierenkarzinomzelllinien NCI-h295(R) und SW-13 antiproliferativ wirkt (SW-13: unter 0,1 µM Sunitinib 96 ± 7 \%; 1 µM 90 ± 9 \%*; 5 µM 62 ± 6 \%*, Kontrollen 100 ± 9 \%, ab 1 µM p<0,05). Steroidanalysen in den Zellkultur{\"u}berst{\"a}nden von NCI-h295-Zellen mittels Isotopenverd{\"u}nnungs-/Gaschromatographie-Massenspektrometrie belegen eine Abnahme der Cortisolsekretion (1 μM 90,1 ± 1,5 \%*, 5 μM 57,2 ± 0,3 \%*, Kontrollen 100 ± 2,4 \%), w{\"a}hrend bestimmte Vorl{\"a}uferhormone akkumulieren. Der beobachtete Anstieg der Quotienten von 17-OH-Pregnenolon zu 17-OH-Progesteron und DHEA zu Androstendion belegt eine partielle Hemmung der Steroidsynthese auf Ebene der 3ß-Hydroxysteroiddehydrogenase (HSD3B2). Nachdem eine direkte Hemmung des Enzyms HSD3B2 mittels Hefe-Mikrosomen-Assay ausgeschlossen werden konnte, best{\"a}tigte sich auf RNA- mittels Real-Time-PCR und Proteinebene mittels Western Blot eine dosisabh{\"a}ngige Hemmung der Transkription und Translation des Enzyms (mRNA: 1 μM 47 ± 7 \%*; 5 μM 33 ± 7 \%*; 10 μM 27 ± 6 \%*; Protein: 1 μM 82 ± 8 \%; 5 μM 63 ± 8 \%*; 10 μM 55 ± 9 \%*). Auch f{\"u}r CYP11B1 zeigte sich eine dosisabh{\"a}ngige Transkriptionshemmung durch Sunitinib, andere Enzyme wie CYP11A1 dagegen werden nicht beeinflusst. Wenn sich diese in vitro Effekte bei Patienten unter Sunitinib-Therapie best{\"a}tigen sollten, k{\"o}nnte es bei einzelnen Patienten zu einer klinisch relevanten Nebenniereninsuffizienz kommen. Eine eindeutige Wirksamkeit von Sunitinib als Therapieoption beim Nebennierenkarzinom konnte im Rahmen der SIRAC-Studie nicht best{\"a}tigt werden. Hier ist jedoch anzumerken, dass wahrscheinlich eine gravierende Medikamenteninteraktion mit Mitotane zu einer Reduktion des Effekts von Sunitinib beigetragen hat.}, subject = {Nebennierenrindenkarzinom}, language = {de} } @phdthesis{Bellwon2015, author = {Bellwon, Patricia}, title = {Kinetic assessment by in vitro approaches - A contribution to reduce animals in toxicity testing}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122693}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The adoption of directives and regulations by the EU requires the development of alternative testing strategies as opposed to animal testing for risk assessment of xenobiotics. Additionally, high attrition rates of drugs late in the discovery phase demand improvement of current test batteries applied in the preclinical phase within the pharmaceutical area. These issues were taken up by the EU founded 7th Framework Program "Predict-IV"; with the overall goal to improve the predictability of safety of an investigational product, after repeated exposure, by integration of "omics" technologies applied on well established in vitro approaches. Three major target organs for drug-induced toxicity were in focus: liver, kidney and central nervous system. To relate obtained dynamic data with the in vivo situation, kinetics of the test compounds have to be evaluated and extrapolated by physiologically based pharmacokinetic modeling. This thesis assessed in vitro kinetics of the selected test compounds (cyclosporine A, adefovir dipivoxil and cisplatinum) regarding their reliability and relevance to respective in vivo pharmacokinetics. Cells were exposed daily or every other day to the test compounds at two concentration levels (toxic and non-toxic) for up to 14 days. Concentrations of the test compounds or their major biotransformation products were determined by LC-MS/MS or ICP-MS in vehicle, media, cells and plastic adsorption samples generated at five different time-points on the first and the last treatment day. Cyclosporine A bioaccumulation was evident in primary rat hepatocytes (PRH) at the high concentration, while efficient biotransformation mediated by CYP3A4 and CYP3A5 was determined in primary human hepatocytes (PHH) and HepaRG cells. The lower biotransformation in PRH is in accordance with observation made in vivo with the rat being a poor model for CYP3A biotransformation. Further, inter-assay variability was noticed in PHH caused by biological variability in CYP3A4 and CYP3A5 activity in human donors. The inter-assay variability observed for PRH and HepaRG cells was a result of differences between vehicles regarding their cyclosporine A content. Cyclosporine A biotransformation was more prominent in HepaRG cells due to stable and high CYP3A4 and CYP3A5 activity. In addition, in vitro clearances were calculated and scaled to in vivo. All scaled in vitro clearances were overestimated (PRH: 10-fold, PHH: 2-fold, HepaRG cells: 2-fold). These results should be proven by physiologically-based pharmacokinetic modeling and additional experiments, in order to verify that these overestimations are constant for each system and subsequently can be diminished by implementation of further scaling factors. Brain cell cultures, primary neuronal culture of mouse cortex cells and primary aggregating rat brain cells, revealed fast achieved steady state levels of cyclosporine A. This indicates a chemical distribution of cyclosporine A between the aqueous and organic phases and only minor involvement of biological processes such as active transport and biotransformation. Hence, cyclosporine A uptake into cells is presumably transport mediated, supported by findings of transporter experiments performed on a parallel artificial membrane and Caco-2 cells. Plastic adsorption of cyclosporine A was significant, but different for each model, and should be considered by physiologically based pharmacokinetic modeling. Kinetics of adefovir dipivoxil highlights the limits of in vitro approaches. Active transporters are required for adefovir uptake, but were not functional in RPTECT/TERT1. Therefore, adefovir uptake was limited to passive diffusion of adefovir dipivoxil, which itself degrades time-dependently under culture conditions. Cisplatinum kinetics, studied in RPTEC/TERT1 cells, indicated intracellular enrichment of platinum, while significant bioaccumulation was not noted. This could be due to cisplatinum not reaching steady state levels within 14 days repeated exposure. As shown in vivo, active transport occurred from the basolateral to apical side, but with lower velocity. Hence, obtained data need to be modeled to estimate cellular processes, which can be scaled and compared to in vivo. Repeated daily exposure to two different drug concentrations makes it possible to account for bioaccumulation at toxic concentrations or biotransformation/extrusion at non-toxic concentrations. Potential errors leading to misinterpretation of data were reduced by analyses of the vehicles as the applied drug concentrations do not necessarily correspond to the nominal concentrations. Finally, analyses of separate compartments (medium, cells, plastic) give insights into a compound's distribution, reduce misprediction of cellular processes, e.g. biotransformation, and help to interpret kinetic data. On the other hand, the limits of in vitro approaches have also been pointed out. For correct extrapolation to in vivo, it is essential that the studied in vitro system exhibits the functionality of proteins, which play a key role in the specific drug induced toxicity. Considering the benefits and limitations, it is worth to validate this long-term treatment experimental set-up and expand it on co-culture systems and on organs-on-chips with regard to alternative toxicity testing strategies for repeated dose toxicity studies.}, subject = {Zellkultur}, language = {en} }