@article{EberleinPeperFernandezetal.2015, author = {Eberlein, Uta and Peper, Michel and Fern{\´a}ndez, Maria and Lassmann, Michael and Scherthan, Harry}, title = {Calibration of the \(\gamma\)-H2AX DNA double strand break focus assay for internal radiation exposure of blood lymphocytes}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {4}, doi = {10.1371/journal.pone.0123174}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148697}, pages = {e0123174}, year = {2015}, abstract = {DNA double strand break (DSB) formation induced by ionizing radiation exposure is indicated by the DSB biomarkers \(\gamma\)-H2AX and 53BP1. Knowledge about DSB foci formation in-vitro after internal irradiation of whole blood samples with radionuclides in solution will help us to gain detailed insights about dose-response relationships in patients after molecular radiotherapy (MRT). Therefore, we studied the induction of radiation-induced co-localizing \(\gamma\)-H2AX and 53BP1 foci as surrogate markers for DSBs in-vitro, and correlated the obtained foci per cell values with the in-vitro absorbed doses to the blood for the two most frequently used radionuclides in MRT (I-131 and Lu-177). This approach led to an in-vitro calibration curve. Overall, 55 blood samples of three healthy volunteers were analyzed. For each experiment several vials containing a mixture of whole blood and radioactive solutions with different concentrations of isotonic NaCl-diluted radionuclides with known activities were prepared. Leukocytes were recovered by density centrifugation after incubation and constant blending for 1 h at 37°C. After ethanol fixation they were subjected to two-color immunofluorescence staining and the average frequencies of the co-localizing \(\gamma\)-H2AX and 53BP1 foci/nucleus were determined using a fluorescence microscope equipped with a red/green double band pass filter. The exact activity was determined in parallel in each blood sample by calibrated germanium detector measurements. The absorbed dose rates to the blood per nuclear disintegrations occurring in 1 ml of blood were calculated for both isotopes by a Monte Carlo simulation. The measured blood doses in our samples ranged from 6 to 95 mGy. A linear relationship was found between the number of DSB-marking foci/nucleus and the absorbed dose to the blood for both radionuclides studied. There were only minor nuclide-specific intra-and inter-subject deviations.}, language = {en} } @article{PaschkeLinckeMuelleretal.2015, author = {Paschke, Ralf and Lincke, Thomas and M{\"u}ller, Stefan P. and Kreissl, Michael C. and Dralle, Henning and Fassnacht, Martin}, title = {The Treatment of Well-Differentiated Thyroid Carcinoma}, series = {Deutsches {\"A}rzteblatt International}, volume = {112}, journal = {Deutsches {\"A}rzteblatt International}, doi = {10.3238/arztebl.2015.0452}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151636}, pages = {452 -- 458}, year = {2015}, abstract = {Background: Recent decades have seen a rise in the incidence of well-differentiated (mainly papillary) thyroid carcinoma around the world. In Germany, the age-adjusted incidence of well-differentiated thyroid carcinoma in 2010 was 3.5 per 100 000 men and 8.7 per 100 000 women per year. Method: This review is based on randomized, controlled trials and multicenter trials on the treatment of well-differentiated thyroid carcinoma that were retrieved by a selective literature search, as well as on three updated guidelines issued in the past two years. Results: The recommended extent of surgical resection depends on whether the tumor is classified as low-risk or high-risk, so that papillary microcar cinomas, which carry a highly favorable prognosis, will not be overtreated. More than 90\% of localized, well-differentiated thyroid carcinomas can be cured with a combination of surgery and radioactive iodine therapy. Radio active iodine therapy is also effective in the treatment of well-differentiated thyroid carcinomas with distant metastases, yielding a 10-year survival rate of 90\%, as long as there is good iodine uptake and the tumor goes into remission after treatment; otherwise, the 10-year survival rate is only 10\%. In the past two years, better treatment options have become available for radioactive-iodine-resistant thyroid carcinoma. Phase 3 studies of two different tyrosine kinase inhibitors have shown that either one can markedly prolong progression-free survival, but not overall survival. Their more common clinically significant side effects are hand-foot syndrome, hypertension, diarrhea, proteinuria, and weight loss. Conclusion: Slow tumor growth, good resectability, and susceptibility to radioactive iodine therapy lend a favorable prognosis to most cases of well-differentiated thyroid carcinoma. The treatment should be risk-adjusted and interdisciplinary, in accordance with the current treatment guidelines. Even metastatic thyroid carcinoma has a favorable prognosis as long as there is good iodine uptake. The newly available medical treatment options for radioactive-iodine-resistant disease need to be further studied.}, language = {en} }