@article{FusiPaudelMederetal.2022, author = {Fusi, Lorenza and Paudel, Rupesh and Meder, Katharina and Schlosser, Andreas and Schrama, David and Goebeler, Matthias and Schmidt, Marc}, title = {Interaction of transcription factor FoxO3 with histone acetyltransferase complex subunit TRRAP modulates gene expression and apoptosis}, series = {Journal of Biological Chemistry}, volume = {298}, journal = {Journal of Biological Chemistry}, number = {3}, doi = {10.1016/j.jbc.2022.101714}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-299820}, year = {2022}, abstract = {Forkhead box O (FoxO) transcription factors are conserved proteins involved in the regulation of life span and age-related diseases, such as diabetes and cancer. Stress stimuli or growth factor deprivation promotes nuclear localization and activation of FoxO proteins, which—depending on the cellular context—can lead to cell cycle arrest or apoptosis. In endothelial cells (ECs), they further regulate angiogenesis and may promote inflammation and vessel destabilization implicating a role of FoxOs in vascular diseases. In several cancers, FoxOs exert a tumor-suppressive function by regulating proliferation and survival. We and others have previously shown that FoxOs can regulate these processes via two different mechanisms: by direct binding to forkhead-responsive elements at the promoter of target genes or by a poorly understood alternative process that does not require direct DNA binding and regulates key targets in primary human ECs. Here, we performed an interaction study in ECs to identify new nuclear FoxO3 interaction partners that might contribute to FoxO-dependent gene regulation. Mass spectrometry analysis of FoxO3-interacting proteins revealed transformation/transcription domain-associated protein (TRRAP), a member of multiple histone acetyltransferase complexes, as a novel binding partner of FoxO family proteins. We demonstrate that TRRAP is required to support FoxO3 transactivation and FoxO3-dependent G1 arrest and apoptosis in ECs via transcriptional activation of the cyclin-dependent kinase inhibitor p27\(^{kip1}\) and the proapoptotic B-cell lymphoma 2 family member, BIM. Moreover, FoxO-TRRAP interaction could explain FoxO-induced alternative gene regulation via TRRAP-dependent recruitment to target promoters lacking forkhead-responsive element sequences.}, language = {en} } @article{EsnaultSchramaHoubenetal.2022, author = {Esnault, Clara and Schrama, David and Houben, Roland and Guy{\´e}tant, Serge and Desgranges, Audrey and Martin, Camille and Berthon, Patricia and Viaud-Massuard, Marie-Claude and Touz{\´e}, Antoine and Kervarrec, Thibault and Samimi, Mahtab}, title = {Antibody-drug conjugates as an emerging therapy in oncodermatology}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {3}, issn = {2072-6694}, doi = {10.3390/cancers14030778}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262192}, year = {2022}, abstract = {Antibody-drug conjugates (ADCs) are an emerging class of therapeutics, with twelve FDA- and EMA-approved drugs for hematological and solid cancers. Such drugs consist in a monoclonal antibody linked to a cytotoxic agent, allowing a specific cytotoxicity to tumor cells. In recent years, tremendous progress has been observed in therapeutic approaches for advanced skin cancer patients. In this regard, targeted therapies (e.g., kinase inhibitors) or immune checkpoint-blocking antibodies outperformed conventional chemotherapy, with proven benefit to survival. Nevertheless, primary and acquired resistances as well as adverse events remain limitations of these therapies. Therefore, ADCs appear as an emerging therapeutic option in oncodermatology. After providing an overview of ADC design and development, the goal of this article is to review the potential ADC indications in the field of oncodermatology.}, language = {en} } @article{BanickaMartensPanzeretal.2022, author = {Banicka, Veronika and Martens, Marie Christine and Panzer, R{\"u}diger and Schrama, David and Emmert, Steffen and Boeckmann, Lars and Thiem, Alexander}, title = {Homozygous CRISPR/Cas9 knockout generated a novel functionally active exon 1 skipping XPA variant in melanoma cells}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {19}, issn = {1422-0067}, doi = {10.3390/ijms231911649}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290427}, year = {2022}, abstract = {Defects in DNA repair pathways have been associated with an improved response to immune checkpoint inhibition (ICI). In particular, patients with the nucleotide excision repair (NER) defect disease Xeroderma pigmentosum (XP) responded impressively well to ICI treatment. Recently, in melanoma patients, pretherapeutic XP gene expression was predictive for anti-programmed cell death-1 (PD-1) ICI response. The underlying mechanisms of this finding are still to be revealed. Therefore, we used CRISPR/Cas9 to disrupt XPA in A375 melanoma cells. The resulting subclonal cell lines were investigated by Sanger sequencing. Based on their genetic sequence, candidates from XPA exon 1 and 2 were selected and further analyzed by immunoblotting, immunofluorescence, HCR and MTT assays. In XPA exon 1, we established a homozygous (c.19delG; p.A7Lfs*8) and a compound heterozygous (c.19delG/c.19_20insG; p.A7Lfs*8/p.A7Gfs*55) cell line. In XPA exon 2, we generated a compound heterozygous mutated cell line (c.206_208delTTG/c.208_209delGA; p.I69_D70delinsN/p.D70Hfs*31). The better performance of the homozygous than the heterozygous mutated exon 1 cells in DNA damage repair (HCR) and post-UV-C cell survival (MTT), was associated with the expression of a novel XPA protein variant. The results of our study serve as the fundamental basis for the investigation of the immunological consequences of XPA disruption in melanoma.}, language = {en} }